
Expert Systems With Applications 232 (2023) 120837

Available online 19 June 2023
0957-4174/© 2023 Elsevier Ltd. All rights reserved.

Q-learning driven multi-population memetic algorithm for distributed
three-stage assembly hybrid flow shop scheduling with flexible
preventive maintenance

Yanhe Jia a, Qi Yan b, Hongfeng Wang b,*

a School of Economics and Management, Beijing Information Science & Technology University, Beijing 100192, China
b College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

A R T I C L E I N F O

Keywords:
Distributed hybrid flow shop
Transportation and assembly
Preventive maintenance
Meta-heuristics
Reinforcement learning
Integration

A B S T R A C T

The distributed assembly flow shop scheduling (DAFS) problem has received much attention in the last decade,
and a variety of metaheuristic algorithms have been developed to achieve the high-quality solution. However,
there are still some limitations. On the one hand, these studies usually ignore the machine deterioration,
maintenance, transportation as well as the flexibility of flow shops. On the other hand, metaheuristic algorithms
are prone to fall into local optimality and are unstable in solving complex combinatorial optimization problems.
Therefore, a multi-population memetic algorithm (MPMA) with Q-learning (MPMA-QL) is developed to address a
distributed assembly hybrid flow shop scheduling problem with flexible preventive maintenance (DAHFSP-FPM).
Specifically, a mixed integer linear programming (MILP) model targeted at the minimal makespan is first
established, followed by an effective flexible maintenance strategy to simplify the model. To efficiently solve the
model, MPMA is developed and Q-learning is used to achieve an adaptive individual assignment for each sub-
population to improve the performance of MPMA. Finally, two state-of-the-art metaheuristics and their Q-
learning-based improvements are selected as rivals of the developed MPMA and MPMA-QL. A series of numerical
studies are carried out along with a real-life case of a furniture manufacturing company, to demonstrate that
MPMA-QL can provide better solutions on the studied DAHFSP-FPM..

1. Introduction

In today’s fast-changing market, distributed manufacturing (DM) is
becoming increasingly popular as a new mode to increase production
flexibility and tackle the challenges of mass customization (Fu et al.,
2021; Lohmer & Lasch, 2021; Srai et al., 2016). Distributed assembly
flow-shop scheduling (DAFS) problem, as one of classical and chal-
lenging optimization problems under DM, is applicable in many prac-
tical manufacturing environments such as pharmaceutical production
(Zhao, Xu, et al., 2022), furniture industry (Cai, Lei, Wang, & Wang,
2022). DAFS has also attracted the attention of a wide range of scholars
in terms of the review paper of Komaki, Sheikh, and Malakooti (2019) as
well as related works of recent three years.

A large portion of the research focused on the two-stage DAFS with
distributed flow-shop fabrication and single-machine assembly and
presented more and more efficient optimization algorithms. For
instance, Zhao, Di, et al. (2022) and Zhao, Xu, et al. (2022) respectively

designed a self-learning hyper-heuristic approach and a population-
based iterated greedy algorithm to achieve the minimization of the
total flow time. Zhang et al. (2022) presented a matrix cube-based
estimation of distribution algorithm to tackle an energy-efficient DAFS
with the objectives of minimizing the makespan and total carbon
emission. Li, Pan, et al. (2022) developed a referenced iterated greedy
algorithm to minimize the total tardiness. Song, Yang, Lin, and Ye
(2023) proposed an effective hyper heuristic-based memetic algorithm
to minimize the maximum completion time.

Some studies have additionally considered assembly processes with
multiple assembly machines (Framinan, Perez-Gonzalez, & Fernandez-
Viagas, 2019). For instance, Li et al. (2019) investigated a two-stage
DAFS with parallel batching and linear deteriorating and developed a
knowledge-based hybrid artificial bee colony algorithm. Lei, Su, and Li
(2021) proposed a cooperated teaching–learning-based optimization
algorithm to deal with a two-stage DAFS targeted at the minimal
makespan, where each factory is equipped with an assembly machine.

* Corresponding author.
E-mail addresses: yhejia@bistu.edu.cn (Y. Jia), yanqqz@stumail.neu.edu.cn (Q. Yan), hfwang@mail.neu.edu.cn (H. Wang).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.120837
Received 1 March 2023; Received in revised form 11 June 2023; Accepted 11 June 2023

mailto:yhejia@bistu.edu.cn
mailto:yanqqz@stumail.neu.edu.cn
mailto:hfwang@mail.neu.edu.cn
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.120837
https://doi.org/10.1016/j.eswa.2023.120837
https://doi.org/10.1016/j.eswa.2023.120837

Expert Systems With Applications 232 (2023) 120837

2

Cai et al. (2022) proposed a shuffled frog-leaping algorithm for a three-
stage distributed assembly hybrid flow shop scheduling (DAHFS) prob-
lem, in which each factory has a hybrid flow shop for fabrication, a
transportation machine for collecting and transferring, and an assembly
machine for final assembly.

Despite these DAFS-related initiatives, there is still more research
that has to be refined. Various DAFS variations can be researched further
in light of actual scenario demands and past research. On the one hand,
DAHFS is rarely studied in existing studies. In reality, hybrid flow shop
scheduling (HFS) and distributed hybrid flow shop scheduling (DHFS)
problems are very common in real-world applications and have received
a lot of attention in academia (Neufeld, Schulz, & Buscher, 2022; Shao,
Shao, & Pi, 2020). Therefore, considering the flexibility of flow shops in
DAFS is significant and realistic (Cai et al., 2022; Zhao, Zhou, & Liu,
2021). On the other hand, previous research typically ignored the
transportation stage that plays an important and essential role between
the production and assembly stages; thus, there is a need for a more in-
depth study of the three-stage DAFS.

Moreover, machine deterioration and failures are inevitable in real-
life assembly production, yet they are often neglected in DAFS-related
research. There has been a succession of scholars to integrate appro-
priate maintenance activities into the assembly scheduling process in
other manufacturing scenarios. For example, Zhang and Tang (2021)
addressed a two-stage assembly flow shop scheduling problem with
flexible preventive maintenance (PM) and parallel assembly machines,
in which maintenance levels were defined to evaluate the states of each
machine. Wang, Lei, et al. (2022) designed a

Expert Systems With Applications 232 (2023) 120837

3

maintenance is an additional service provided by the supplier when the
machine is sold. From the supplier’s perspective, the more maintenance
is performed, the more additional revenue can be obtained. For this
reason, it is assumed that the supplier will accept any maintenance plan
presented by the manufacturer. In other words, the purpose of this study
is to assist the manufacturer in determining the optimal production and
maintenance plans of the DAHFSP-FPM targeted at the minimal make-
span. Notations throughout this study are defined in Table 1.

To ensure the optimality of the proposed DAHFSP-FPM, a mixed
integer linear programming (MILP) model with position-based mainte-
nance decisions (i.e., PM is possible after each operation) is presented
below.

min Cmax (1)

s.t.

Cmax ≥ E3
g +A3

g∀g (2)

E3
g ≥ E2

g +A2
g∀g (3)

E2
g ≥ E1

il +A1
il∀g, i ∈ Ωg, l (4)

E1
il ≥ E1

i,l− 1 +A1
i,l− 1∀i, l ≥ 2 (5)

E1
jl ≥ E1

il +A1
il + ξ1

jlt
1
PM − L

(
2 − X ilfm,k− 1 − X jlfmk

)
∀i, j, l, f ,m, k ≥ 2 (6)

E1
i1 ≥ 0∀i (7)

a1
il ≥ 0∀i, l (8)

A1
il = P1

il + ε1a1
il∀i, l (9)

a1
jl ≥ a1

il +A1
il − L

(
2 − X ilfm,k− 1 − X jlfmk + ξ1

jl

)
∀i, j, l, f ,m, k ≥ 2 (10)

a1
il ≥ − L

(
1 − ξ1

il

)
∀i, l (11)

ξ1
il ≤ 1 −

∑

f

∑

m
X ilfm1∀i, l (12)

E2
h ≥ E2

g +A2
g + ξ2

ht2
PM − L

(
2 − Y gf ,q− 1 − Y hfq

)
∀g, h, f , q ≥ 2 (13)

a2
g ≥ 0∀g (14)

A2
g = P2

g + ε2a2
g∀g (15)

a2
h ≥ a2

g +A2
g − L

(
2 − Y

� −

−

h29.22210

+

2

)
∀g, h, j, q ≥ 2 (6)쀰㌰ㄲ࠲㔲

Expert Systems With Applications 232 (2023) 120837

4

∑

g
Y gfq ≤ 1∀f , q (29)

∑

g
Y gfq ≤

∑

g
Y gf ,q− 1∀f , q ≥ 2 (30)

∑

g
Z gfq ≤ 1∀f , q (31)

∑

g
Z gfq ≤

∑

g
Z gf ,q− 1∀f , q ≥ 2 (32)

∑

q
Y gfq =

∑

m

∑

k
X ilfmk∀g, i ∈ Ωg, l, f (33)

∑

q
Z gfq =

∑

m

∑

k
X ilfmk∀g, i ∈ Ωg, l, f (34)

where the optimization objective is determined by (1) and (2), i.e.,
minimizing the makespan of the three-stage manufacturing process.
Constraints (3) and (4) respectively represent the earliest starting time
of each product at transportation and assembly stages. Constraint (5)
shows that the earliest starting time of each component must be greater
than or equal to the completion time of the previous operation of the
component (if any). Constraints (6), (13) and (19) specify that the
earliest starting time of each component (or product) must be more than
or equal to the completion time of the previous component (or product)
at the same machine (if any), in which if PM is performed immediately
after the previous component (or product), the maintenance time is
counted as part of the completion time of the previous component (or
product). Constraint (7) initializes the earliest starting time at the pro-
duction stage. Constraints (8), (14) and (20) ensure the initial machine’s
age as 0 at all the machines of the three-stage manufacturing process.

Regarding machine deterioration and maintenance, constraints (9),
(15) and (21) are used to calculate the actual processing time consid-
ering linear deterioration effects at the production, transportation, and
assembly stages respectively. Constraints (10), (16) and (22) respec-
tively reflect the update of the machine’s age under cumulative deteri-
orating effects without PM at the production, transportation, and
assembly stages. Constraints (11), (17) and (23) demonstrate the perfect
effect of PM activities at the above three stages, i.e., the implementation
of PM can restore the machine’s age to 0.

As for the relationship between decision variables, constraints (12),
(18) and (24) specify that the maintenance decision prior to the first
operation of any machine must be 0. Constraints (25), (33) and (34)
guarantee that all components of one product must be assigned to the

same factory. Constraint (26) represents that each operation can only be
processed on one machine of one factory. Constraints (27), (29) and (31)
ensure that each machine at different stages can process at most one
operation at any time. Constraints (28), (30) and (32) show that there is
no vacant position before a filled position of the same machine at
different stages.

The MILP model has been validated by the CPLEX solver under small-
scale cases. Due to the NP-hard nature of DAHFSP-FPM, a medium-scale
case, e.g., six products, each of which consists of two to five components,
and two factories, each of which has two stages and two to five machines
per stage in the flow-shop production process, can hardly find an
optimal solution in two hours. Although the production-maintenance
joint scheduling plan derived in this way is theoretically optimal,
finding the optimal solution in such a huge solution space is almost
impossible using any optimization approach. As a result, we reduce the
position-based maintenance decision to an efficient maintenance strat-
egy, that is, the cumulative running time of the machine cannot exceed a
predetermined value T. In this way, maintenance activities can be
determined given a production sequence, avoiding a large number of
maintenance decisions while ensuring maintenance periodicity. Hence,
constraints (12), (18) and (24) need to be adjusted to the following
constraints respectively. Fig. 2 illustrates the sufficient condition for
maintenance execution with constraint (35) as an example.

ξ1
jl =

⎧
⎪⎪⎨

⎪⎪⎩

1, if P1
jl + (1 + ε1)

(
a1

il + A1
il

)〉
T

andX ilfm,k− 1 + X jlfmk = 2
0, otherwise

∀i, j, l, f ,m, k ≥ 2 (35)

ξ2
h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if P2
h + (1 + ε2)

(
a2

g + A2
g

)〉
T

andY gf ,q− 1 + Y hfq = 2
0, otherwise

∀g, h, f , q ≥ 2 (36)

ξ3
h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if P3
h + (1 + ε3)

(
a3

g + A3
g

)〉
T

andZ gf ,q− 1 + Z hfq = 2
0, otherwise

∀g, h, f , q ≥ 2 (37)

However, the simplified model considering the above constraints is
still NP-hard, and the optimal solution can hardly be obtained in prac-
tice. To efficiently solve the simplified model, an MPMA and its Q-
learning-based improvement are developed in the next section to find
near-optimal solutions.

Fig. 2. Illustration of the sufficient condition for PM.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

5

3. MPMA-QL for DAHFSP-FPM

The basic idea behind memetic algorithms (MAs) is combining
evolutionary operators such as crossover and mutation with local search
to achieve better performance than either approach alone. Different
designs of evolutionary search and local search strategies correspond to
different MAs. To enhance the search capability during the solving
process of DAHFSP-FPM, an improved MA called MPMA-QL is specially
designed in this study, where the multi-population strategy is applied to
MA and Q-learning is introduced to adaptively adjust the individual
quantity among multiple subpopulations. In general, the first three
subsections introduce the main components of MPMA, followed by the
Q-learning process, and the overall framework of MPMA-QL is given in
the last subsection.

3.1. Encoding and decoding

In this study, a three-string encoding strategy including factory string
(FS), product string (PS), and component string (CS) is introduced to
represent the solution. FS is used to specify the factory to which each
product is assigned. PS indicates the processing sequence for all products
during the three-stage manufacturing process. Moreover, CS is used to
represent the processing sequence for all components of each product.

Regarding the generation of the three-string encoding, PS and CS are
completely randomly generated, while some FSs are generated using the
following Heuristic to ensure the quality of the initial population and
others are randomly generated to maintain population diversity. The
pseudo code of the population initialization is given in Algorithm 1,
where n denotes the population size.

Heuristic: The total time for each product to be manufactured in three
consecutive stages without considering deterioration is calculated and
sorted by the longest processing time first (LPT) rule, and then the sorted

products are distributed to each factory in turn based on the randomly
generated factory order.

An illustration of the three-string encoding with the DAHFSP-FPM in
Fig. 1 as an example is presented in Fig. 3. It is clear that products 1, 4
and 6 are assigned to factory 1 in the order of 6–1-4, and the permuta-
tion of corresponding components is 21-22-2-3-1-16-13-15-14, while the
other three products are assigned to factory 2 in the order of 2-3-5, and
the permutation of corresponding components is 4-6-5-7-9-8-10-12-11-
17-19-18-20. The three-step decoding process is defined in detail as
follows.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

6

The first step is the decoding of the production phase. The product
manufacturing sequence and the factory assigned to each product are
first determined based on PS and FS, and the machine with the earliest
available time is assigned to each component of each product in turn
according to the order of component codes of each product at each stage
of hybrid flow-shop production under the corresponding factory.
Moreover, the earliest start time of each component must satisfy con-
straints (5) and (6) in the MILP model. The second step is the decoding of
the transportation phase. The earliest start time for each product is
determined in order of the product code in turn. This depends on the
maximum completion time for all components of that product, and the
transportation completion time of the previous product, as shown in
constraints (4) and (13). Similarly, constraints (3) and (19) are strictly
satisfied in the decoding of the assembly phase.

Unlike previous studies such as Cai et al. (2022), the decoding pro-
cess of components (or products) requires calculating the actual pro-
cessing time and updating the machine’s age based on the linear
deterioration effect, as well as determining in real time whether the
accumulated machine operation time exceeds a set threshold. If the
threshold is exceeded (see Fig. 2), PM is performed to reset machine’s
age to 0 and the component (or product) is processed immediately af-
terwards; otherwise, the component (or product) can be processed
directly.

3.2. Population division and exploration search

The idea of multi-population collaborative optimization is intro-
duced to enhance the performance of exploration search in solving
complex DAHFSP-FPM. The exploration search consists of crossover and
mutation operations. Regarding crossover operations, we design seven
crossover strategies based on the characteristics of three-level coding
and these crossover strategies have their own advantages in different
scenarios. Compared with a single crossover approach, the solutions
generated by multiple crossover approaches correspond to different
solution structures, which can avoid falling into the local optimum
prematurely. As a consequence, the whole population with n individuals
is divided into seven subpopulations with respective crossover strate-
gies, in which the number of individuals in each subpopulation is rela-

tively even and two crossover processes are performed using each
crossover strategy. The details are presented as follows.

The first crossover strategy C1 is dedicated to FS, as shown in Fig. 4.
The first step is the crossover within a subpopulation, as shown in Al-
gorithm 2. The best and worst individuals in the current subpopulation s
are first determined, and one individual Π from the rest of the subpop-
ulation is randomly selected as the optimized object. The codes with the
same position as the worst individual are removed and the blanks are
filled in order with reference to the coding order of the best individual,
which is essentially a position-based crossover (PBX). Such an approach
can guide individuals away from the poor solution and explore better
neighborhood structures based on the current optimal individual. If the
new solution after the above crossover is worse than Π, the PBX oper-
ation in Cai et al. (2022) is performed for Π and a random individual
from the current subpopulation s.

The second step is the crossover between subpopulations, as pre-
sented in Algorithm 3. The subpopulation s* with the global best so-
lution Πb* is first determined and the worst solution Πw* of
subpopulation s* is also found. Then, Πb* and Πw* are used to guide the
update of Π using the crossover strategy in subpopulation s*. If the new
solution after the above crossover is worse than Π, the PBX operation is
executed for Π and a random individual from a random subpopulation
sΔ. Such an approach allows for interaction between subpopulations,
which can effectively improve the structure of solutions.

The other six crossover strategies are similar to C1 except that
crossover operations are performed for different parts of the three-level
code. C2 is specifically designed for PS. C3 is a separate operation for CS.
C4-C7 perform multi-level crossover operations for the combinations of
FS and PS, FS and CS, PS and CS, and FS and PS and CS, respectively.

After two rounds of crossover processes, two mutation mechanisms
including NS1 and NS2 proposed by Cai et al. (2022) are randomly
assigned to each individual, as shown in the following Algorithm 4.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

7

3.3. Knowledge-based exploitation search

Exploration search alone easily falls into local optima, so it is crucial
to design knowledge-based exploitation search strategies to efficiently
adjust the neighborhood structure of the solution. To improve the

computational efficiency of MPMA, this study conducts three
knowledge-based exploitation searches including LS1, LS2, LS3 for the
best individual of each subpopulation, as shown in Algorithm 5.

LS1: Select one product from the factory with longer completion time
(which is treated as the critical factory) and exchange it with one
product from other factories. The above procedure is repeated five
times. If Cmax cannot be improved, the best individual from the five
experiments is tried to replace the worst individual in the subpopulation.

LS2: A product is randomly selected from PS and inserted sequen-
tially into all possible positions to evaluate fitness values. There are P
possible neighborhood structures, and thus the fitness is evaluated P
times. By comparing the fitness values, the optimal insertion position of
the product is found to ensure a better neighborhood structure.

LS3: The component codes of each product are adjusted in a similar
way to LS2. Specifically, one component is selected randomly from each
product in turn and is inserted into the optimal position of the corre-
sponding component code, and thus the total number of fitness assess-
ments depends on the total number of components.

Fig. 3. Illustration of three-string representation.

Fig. 4. Crossover illustration with FS as an example.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

8

3.4. Q-learning process

In the developed MPMA, there is a lack of adaptive adjustment of the
number of individuals of each subpopulation. To further achieve effec-
tive information exchange between subpopulations and enhance the
solving performance of MPMA, Q-learning is employed to dynamically

adjust individual numbers of seven subpopulations instead of random
adjustment. The procedure of the Q-learning update is given in Algo-
rithm 6, in which ωmin, ωmax, C◦ , C*, σ, a, Q, σ′ and a′ are defined in
Algorithm 7. In addition, the definitions of state, action and reward in
the Q-learning process are presented below.

State: System state is evaluated by the difference between the
maximum value ωmax and minimum value ωmin of the number of in-
dividuals in each subpopulation. It can be found that the number of
states is not fixed. If a new state σ′ is generated during the Q-learning
process that did not appear before, the state is added to the Q-table Q.

Action: Action set A is composed of three actions, i.e., increase the
number of individuals of the subpopulation that generates more new
solutions; decrease the number of individuals of the subpopulation that
generates more new *、ㄶ㌶㠰㉔䨊ㄠ〠〠ㄠ㐱⸶㜵㠠㘷⸹㔸㠳〰〲㘶㠳⁔洊嬨*、ㄶ㘀ഀԀༀࠀᄀ܀崠告〰0㌠呭ਜ਼⠀ऀ〶 ⥝⁔䨊䰊⽆〠ㄠ呦‰‰‱༃⁔洊嬨g4‰‰‱‰⸷㌹㜠ⴱ⸳ㄵ㤠呭ਜ਼⠀ༀ㠷㠳⁔洊嬨*、ㄶ㌶㠰㉔䨊告‰‰‱′⸹㈳㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀ༀጀЄ㔹⁔浔洊嬨*、ㄶ㘰〈vid㤱‱㐰㠳⁔洊嬨g(㘀崠告‰‰‱″⸷㌴㌠ⴳ⸹㐰㘠呭ਜ਼⠀ᄀ᐀崠告‰‰‱‴⸹ㄵㄠⴳ⸹㐰㘠呭ਜ਼⠴㈠ⴲ〰〕 ⥝⁔䨊〈vid 㜍㈰̀ᔀ崠告‰‰‱ㄷ⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀ืㄴ〰㜍㈰̀Ƞ〠〠ㄠⴱ㘮㈷㐸ㄮ㌱㔹⁔洊嬨each ⥝⁔䨊ㄠ〠〠ㄠⴱ㌮㠰㘵ㄮ㌱㔹⁔洊嬨sub(㜍㈰̀justm(〸㈰〰܍㈰̀ူ〆e ⥝⁔䨊ㄠ〠〱㈩崠告‰″㘸〲告‰‰‱″ㄵ㔮㈴㤴⁔洊嬨p〄w ⥝†㌷⸷‵㠴⸹〱㘴㜴㘠ⴲ⸸〹㘠呭ਜ਼⠀ᔀༀ(*ㄠ〠〠呭ਜ਼⠡⥝⁔䨊䕔ੑੱਵ⸵㜸㐲⸹㔲〵㠴⸹〱㘴㜴㘠ⴲ⸸〹㘠呭ਜ਼昊ㄠ〠〠ㄠ〠〠呭ਜ਼⠀㈮㘲㐷܀Ѐ〈s*ㄠ㈶⸰㠳㠠ⴶ⸵㘵㐠呭ਜ਼⠊⥝〰̀Ƞ〠〠ㄠⴱ⸴㜠〠呭ਜ਼⠀ㄠⴰ⸲㈰㔠ⴱ⸳〸㠠呭ਜ਼⠁ᔀ‱′㘮〸㌸㘮㔶㔴⁔洊嬱ㄸ㜰ㄠ㌸㜮㐳㤠㘷〮〰〰Ƞ〠〠ㄠⴱ〰ጀЄㄴ㠰ㄠ㌸㜮㐳㤠㘷〮a�〈s ⥝⁔䨊ㄠ〠㠠呭㌳‰‰‷⸹㜰ㄠ㐸㈮ㄷ㌠㘷〮告‰‰‱‱㐮ㄸ㌵㘮㔶ㄮ㤱㐴 ⥝⁔䨊ㄭ㈮㘲㐷⁔洊嬨(〃ut〰Ԁༀࠀ㜰ਾ㸊atevid}㜰㔀ᘀ́㈩崠告‰‰‱ㄱㄮ㌱㔹⁔洊嬨In ⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㘸㍱⸸㘀Ѐᴀns告‰‰‱ㄶ⸰〴㔠〳〰㐀崠告‰‰‰〰̀ษ崠告‰‰‱〇e)㈩崠告‰‰‱ 嬨suf㔱㘀Ѐᴀ〈vid-Ѐᴀurat ⥝⁔䨊ㄠ〠〠ㄠⴱ㘮〰洊嬨㈰‰‱㌮㔹㤲ㄮ㌰䜠告‰‴‱㜮㤳㠲㈮㙱㌹〠〠ㄠⴳ⸵㤹㈠ⴱ⸳〒�㌀崠吰*〠ㄠⴳ⸵㤹㈠ⴱ⸳〱″㜮ఀࠀ〮㈵㘀Ѐᴀ〈vi[⠀̳‸ㄶe,)㌀崠告‰‰‱‵⸴㜠〠呭ਜ਼⠀ࠀ܀崠告ਯ䘳‱⁔昊ㄠ〠〠ㄠⴲ㘠ㄾԀༀ‰‱″㌮㜵ㄸ‶㔮㌳㐱⁔洊〲㘵〴 ⥝⁔䨊ㄠ〠ⴱ⸳〸㠠呭ਜ਼⠀ࠃ㜀Ċ⥝⁔䨊ㄠ〹⁔洊嬨F⥝⁔䨊⽆〠ㄠ呦‰㠀㘀Ѐᴀ〰〳 ⥝⁔䨊ㄠ〠〠ㄠⴱ㠮㠷ㄱㄮ㌱㔹⁔洊嬨In ⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㘏�Ѐ崠告‰‰‱‷⸸㔲㤠ⴱ⸳〸〰㜰ਾ㸊ss ⥝⁔䨴⁔洊嬨the ⥝⁔䨊ㄠ〠〠ㄠ㜮ㄴㄵ㔮㈴㤴⁔洊嬨sQ㠳焊〱⸸㈴㌠ⴲ⸶㈴㜠呭ਜ਼⠀崠吰‱‷ㄠ〮㔸㌲㈮㘲㐷⁔洊嬨oQû㌠ⴲ⸶㈴㜠呭ਜ਼⡁ 崠告ਊㄠ呌ਯ䘰‱⁔昊ㄠ㈩崠告‰‰‱⸳㤲㈠ⴱ⸳〸㠠呭ਜ਼⠀菉ᔀᔀerat(〰ㄷB㌷㌳㈮㘲㐷⁔洊嬨䄠⥝⁔䨊⼀Ԁༀࠀᄀܷ⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀Ĺ㸊ss�Ѐ々luoent ⥝⁔䨊ㄠ〠〠ㄠ㈹⸰〰㈠ⴲ⸶㈴㜱Ѐ⸳㜳㌠ⴲ⸶㈴㜠呭ਜ਼⡁ⴲ⸶㈴㜠呭ਜ਼⠀〰̀༰々*〠〠ㄠ〠〠呭ਜ਼⠀Ԁ㤱〰㌀Ԁሀ㘀‰‰‱ㄱㄮ㌱㔹⁔洊嬨Ine ⥝⁔䨊⽆ㄠㄠ呦‰‰㔱㘰ࠀ܀⁔洊嬨I尰㈰(㘀‶㠰㉔䨊告ሀ. ⥝⁔㈮㐰ㄠ〠〠ㄠⴸ⸶㈱ㄠⴲ⸶〳㘠ⴲ⸶㈴㜠呭ਜ਼⠀　椾‱㠮㘲ㄱ㈮㘢Ԁ‰‰‱‰‱‰⸱ㄳ㠠ⴱ⸳ㄵ㤠呭ਜ਼⠀Ԁ܀ଭ〷‱㈮㤴〶⁔洊嬨eз㈮㘲㐷⁔洊嬨A)㜀ጀЀ崠吰崠告‰‰‱ㄶ⸰〰ㄶ㐱㈩崠告‰‰‱㈰⸶㤠〰〃ulu㌮㜲㜲ㄮ㌱㔹⁔洊嬨b)㜰㸊*ㄠⴸ⸶㈱ㄠⴲ⸶⸱㐱㔠ⴵ⸲㐹㐠呭ਜ਼⠀ᔀฮ㠶⸹㐰㘠呭ਜ਼⠀Ѐ⸱㜳‶㜰⸱ㄠ捭ਰ崠告㌠ⴱndividB㘲㐠〠〠ㄠ㈲⸰㈲㈠ⴳ⸹㐰㘰崠告‰‰‱‷⸸㔲㤠ⴱ⸳〸㠠吹㠹㸊*ㄠⴸ⸶㈱ㄠⴲ⸶⸱㐱㔠ⴵ⸲‱㠮㜲㠸㈮㘲㐷⁔洊嬨Ĳ⥝⁔䨊ㄠ〠〠ㄲ⸸〹㘠呭ਜ਼⠀܀㠊㸾ndi*呭ਜ਼䀰〃ut〰ԁ㈩崠告‰‰‱‵㜮㘷⸸〹㘠呭ਜ਼⠀܀ᄠ〰�܀ġ㌶㈮㘲㐷⁔洊嬨(Oကᄀက崠告‰‰‱‰⸱ㄳ㠠ⴱ⸳ㄵ㤠呭ਜ਼⠀Ԁ܀ସ㠵㌮㤴　܀ࠀఀࠀ崠告ਯ䘱‰〆〰�܀蜒�㌀崠㘰㈵�nQ㤰Ԁ܀ସ⸵㤱〰　nt〮〰〰Ƞ〠〠ㄠⴱ〰ጀЭ㘲㐷⁔洊　܀ࠀ⁔洊嬱㜰々*ㄱ洊〠朊䉔⁔䰊⽆〠ㄱn㜮㔶㤴ㄮ㌱㔹⁔洊嬨(ܸㄹ㤀ᘀЀvidB㠶〰‰‱′㔮㤶㈹㔮㈴㤴⁔洊嬨enha*〠〵bem㔮㈠ㄸ⸷㈸㠠ⴲ⸶㈴㜠呭ਜ਼⠁㈩崠告‰‰‱㈮㠰㤶⁔洊嬨nk⸲㠰〰�܀༰〰〈*呭ਜ਼䀰〃ut〰ԁ㈩崠告‰‰‱‵㜮㘷‰‱‷⸸㔲㤠ⴱ⸳〸㠠吵〰㐮㠶㔮㈴㤴⁔洊嬨ex3܀ᄀࠀ吊ㄠ呌ਯ䘰‱⁔昊ㄠ〠〠㠴ㄠ〠〠ㄠⴸ⸶㈱ㄠⴲ⸶㈴㘀ഀԀༀੂ 崠告ਯ䘰‱⁔昊ㄠ〠〠ༀ崠告‰‰‱ㄶ⸰〴㜰ਾ㸊�Ѐ᐀᐀ЀༀࠀༀጀЀй㠴㤀ࠀ܀m)r⥝⁔䨊䕔ੑੱ⸹㜰ㄠ〠㠳焊㜶ကЀ㌀崠告‰‰‱ㄴ㔲〰〰〰㌵㔲㜱㘮㔶㔴⁔洊嬨ㄠ〠〠ㄠⴳ⸷㈷㈠〰〰Ƞ〠〠ㄠⴱ㜮㔶㤴ⴲ⸶㈴㜠呭ਜ਼⠀A)㜀nd㠮㔹㌲ကЀ᐀ᄀ崠告ਯ䘱‰㐮㜱‴⸴　Ѐc�㌀崠〠ㄮ㤷〴　Ѐ1々nd㠰‱‰‰㈰erf‰‱′〮㔶㐠ⴳ⸹㐰㘠呭ਜ਼⠀⌀㘮㔵㠳‰〰。‰‰‱‵㜮㘷⸸〹㘠呭ਜ਼⠀崠告ਯ䘱‱⁔昊ㄠ〠〷《㸾ഀ崠焊〠〠㔹㔮㬊〠〠〲㌀Ѐй㠰〰‰‰ഀ崠⸰〰⌀‰ᔀЀ‶㠰㉔䨊吱㈩崠告‰‰‱㈠ⴱ⸳ㄵ㤠ㄲ⥝⁔䨊ㄠ〠〠ㄠⴱ㐴〠〠」 ⥝‷〮a〰〗g⁔䨊⽆〠ㄱr⥝⁔〶*〠〠ㄠⴱ〠ㄠㄵ⸰〰㈠ⴱ⸳〭ㄮ㌱㔹‱㈩崠告‰‰‱㘱‰‱‰‰ഀ崠㜰ㄳ⸷㌵㐠ⴵ⸲㐹㐠吠ㄲou㔵〴qਰ【̀㠮〰〰Ƞ〠〠ㄠⴱ〰ጀЭ㥔㔰㔶qਰ【̀쀰〳

sQ㠲⸸㌱qਰ【̀㡁㌮㤳㌵⁔洊嬨nup〰㐀焊〰ဃ�Ѐ崠告‰〰ഀက㔶㤀焊〰ဃÀഀ

the 〠ㄠ㈰⸵㘴㌮㤰Ԁ܀㈱1qਰ【̀㠮㘸〲告‰‰‱‴ㄮ㘷㔸‶㜮㤵㠸㌰〷《㸾ਃ焊㔮㔷̀㡁洊嬨(《⥝⁔䨊ㄠ〠〠ㄠ㈰⸵㘴㌮㤴〶⁔洊嬨To ⥝〈ㄳ㸊ͱਵ⸵㜃0⁔洊嬨Ĳ⥝⁔䨰̀ЀԀ‰‰‱‵㜮㘷‰‱‷⸸㔲㤠ⴱ⸳〸ⴹ吹㈹.焊㔮㔷̀e

:。㤾1㐰』.䄴⸲㜰、䨰�ੳ挰܀『�㤴〰ༀ㌰ᔀ
o\〰㐲⸹㐰㜠㘰㌰〰܀ଳ㘠〠呭ਜ਼⠀⼮㘷‰‱‷⸸㔲㤠ⴱ⸳〸ⴀᄀ㜠㘰㌰〰܀Ĳ⥝⁔䨊ㄠ〠〠ㄠⴱ㐮㤰㈠ⴲ⸶㈴㜠呭ਜ਼⠀ԀЀ崠告‰‰‱ㄳ⸲〹㤲㜠㘰㌰〰܀resen〰nd㠮㔹ㄸㄹ㐰㜠㘰㌰〰܀ଳ㘠〠呭

ha*〰܇‶〳〰〇ࠀఀࠀ�‰‰㈰‰‷‶〳〰〇(〄 o㤰‱ 㜠㘰㌰〰܀*〠呭ਜ਼⠁ȩ崠告吊儊焊㜮㤰⸲㘴㈰〇‶〳〰〇�‰‰‱ㄷ⸵㘹㐠ㄠ〠〠ㄠ㌱㔠ⴵ⸲㐹㐠呭ਜ਼⠀ဋq㆐〇‶〳〰〇�ࠀఀࠀᔠ〠ㄹ〰⸸㈠獣〇M㠊㸾ਬ⁔aF�ࠁ〇t�〰ᄀ尰ㄠ㐮㐰㔴⁔a5〱　 獣〇*〠ㄠ〰‰‵㐠吀Ԁtt�〰ᄀ尰㠷〰〙⸸㐴Ѐi㤰*〠〠ㄠ㐱⸶㜵㠠㘷⸹㔸㠳〰‰‱㈮ਙ⸸㐴Ѐ1⁔洊嬨F⥝ İㄷhQ‰‰‱㈮㠰㤶⁔洰㈳Ġ〠〠ㄠ㔷⸶㜠〠ㄠ㜮㠵㈹ㄮ㌰㠭㥔㤰㠰〙⸸㐴Ѐ-㔀崠告‰‰‱㔮㔹〹㌮㤳㌵‸⸲〸〰㠴㐄�Ĳthe

*告‰‰‱′㘮〸㌸㘮㔶㔴⁔洊嬠ㄠ⠀Į㠴㐄�Mㄮ㌱㔹㌮㜳㔴㔮㈴㤴⁔洊嬨that(《⥝⁔䨊ㄠ〠〠ㄠ㐮㈶〲ㄱ〰㠴㐄�iv4‰‰‱″⸷㌴㌠ⴳ⸹㐰㘠呭ਜ਼⠀ᄀ᐀崠告‰‰‱‴⸹《⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㘸㌠〠ㄲ⸊ᠠㄵ㌲〃Àഀ

㤴⁔洊嬨sQ㠳告〓〠ㄵ㌲〃À䨊ㄠ〠〠ㄠ㈮㘲㐷ㄠ〠〠ㄲ⸸〹㘠呭ༀጀԀༀ㠹㌠ⴶ⸵㘵㐠呭㔹̰‱㔳㈰̀㠠〠ㄠ㈰⸵㘴㌮㤴〶⁔洊孅吊儊焊㜮㤷〱‰‸㐷‵㈮ਘ‱㔳㈰̀尰㈳aat ⥝†呭ਜ਼⠀ကƒ〰㌰‱㔳㈰̀㠠ⴵ⸲㐹㐠呭ਜ਼⠀܀㔷ᠠㄵ㌲〃Å ⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㔶㤴ㄮ㌱㔹⁔洊嬨(】*ㄵ㌲〃0 v4‰‰‱″⸷㌴㌠ⴳ⸹㐰㘠呭ਜ਼⠀ᄀ᐀崠告⸸〹㘠呭ਜ਼⠀܀㘮㜸㔃〠ㄵ㌲〃B〰㔀ༀ崠㘠呭ਜ਼⠀ᄀༀ崠〈onF㌲〰㌰‱㔳㈰̀㠠朊䉔⁔䰊⽆〠ㄠ呦‰‰〱㜀ጀĠ〠〠ㄲ⸸〹㘠呭〲㌁‰‰‱‵㜮㘷‰‱‷⸸㔲崠告ਯ䘱‱⁔昊ㄠ〠〠ㄠㄲ⸊ᰮ㐶㤵㜃]⁔䨊ㄠ䨒�㌀崠吲⸰〰ᨴ⸴㘹㔷̀㠠〠ㄠ㈰⸵㘴㌮㤴〃ati1⸸㤊嬨Ю㐶㤵㜃0䄠⥝⁔䨊⽆〠ㄠ呦 ⥝⁔䨊ㄠ〰〰nu(〄ᐮ㐶㤵㜃0‰‱′〮㔶㐠ⴳ⸹㑭ਜ਼⠀܀ഹ㍛⠄⸴㘹㔷̀쌶㠰㉔䨊告‰‰‱′⸹㈳㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀ༀጀЂ⸷〰㈵ᰮ㐶㤵㜃0䄭㔮㈴㤴⁔洊嬨nuℴ㐰㜴ᐮ㐶㤵㜃0 v4‰‰‱″⸷㌴㌠ⴳ⸹㐰㘠呭ਜ਼⠀ᄀ᐀崠告‰‰‱‴⸹㈩崠告吊儊焊㜮㤰⸲㈱〰ᰮ㐶㤵㜃0䄴〰〸䄭㔮㈴㤴⁔䨊ㄠ〠〠ㄠㄵ⸹㘱㠠ⴲ⸶㈲〴J⸴㘹㔷̀씀崠告‰‰‱ㄷ⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀‱‱㈮ਝ⸷㜷〰ༀ㌰㈠〠〠ㄠⴱ㘮㈷㐸ㄮ㌱㔹⁔洊嬨each ⥝⁔䨊ㄠ〠〠ㄠⴱ㌮㠰㘵ㄮ㌱㔹⁔洊嬨�⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀尰㠷〰〟䨊㤰〴�ࠅ㤠呭‰‰‱‴ㄮ㘷㔸‶㜮㤵㠸㌰〠〠ㄲ⸊Ὂ〹〰㐀R〲㌀崠‰‰‱‶〮㔸㈵‶㜮㤵㠸⁔洊嬨*告‰‰‱′㘮〸㌸㘮㔶㔴⁔洊嬰㤮㈱㈮㤴㌷䨊㤰〴�呭ਜ਼⠀⼮㘷‰‰ㄲ⥝⁔䨊ㄠ〠〠‰‰‱‵㜮㘷‰‱‷⸸㔲㤠ⴱ⸳〸㔶〚㝊〹〰㐀T崠告‰‰‵ⴲ⸶㈴㜠呭ਜ਼⠀܀〰㔸⸹㐳㝊〹〰㐀T v4‰‰‱″⸷㌴㌠ⴳ⸹㐰㘠呭ਜ਼⠀ᄀ᐀崠告‰‰‱‴⸹㈩崠告吊儊焊㜮㈰‱㤰〟䨊㤰〴�*ⴶ⸵㔸㌠〰〰Ȋ〠ㄠ㈰⸵㘴㌮㤰ਜ਼⠀〰ม㐰㠳㤴㌷䨊㤰〴�吠ࠀ〰ᄀༀA)㜀Ġⴱ㌮㠰』o ⥝〰〓eش㤰〟䨊㤰〴�ጀԀԀༀ崠⁔洊嬨upT䨊⽆〟䨊㤰〴�ividذㄷW䨊㤰〴�*ㄠ㈰⸵㘴㌮㤴洊嬨nu*〠ㄲ⸊̸⸴‰‰〴�Ĳ⥝⁔䨴⁔洊嬨the ⥝⁔䨊ㄠ〠〠ㄠ㜮ㄴㄵ㔮㈴㤴⁔洊嬰崠告‰‰‱ㄷ⸶㠰ਊ̸⸴‰‰〴�m)r⥝⁔䨊䕔ੑੱ⸹㜰ㄠ〠㠶⸸〮㔷̸⸴‰‰〴�)㈩崠告‰‰‵ⴲ⸶㈴㜠呭ਜ਼⠀܀ค〲ㄸਃ㠮㐠〠〰㐀�Ԁༀ〇〰nd㠲⸰⁔洊㌸⸴‰‰〴�ĳ ⥝⁔䨊ㄠ〠〠ㄠ㘰⸵㠲㔠㘷⸹㔸㠠呭ਜ਼⠀ⴱ⸳ㄵ㤠呭ਜ਼⠀〶㐳㔷̸⸴‰‰〴�*ࠀఀ䨊ㄠ〠〠ㄠ㌮㜳㐳㌮㤴〶⁔洊嬨of ⥝⁔䨊ㄠ〠〠ㄠ㐮㤲⥝⁔䨊䕔ੑੱ⸶⸸㐹̸⸴‰‰〴�m 嬨S⸶㜠〠ㄠ㜮㠵㈹ㄮ㌰㠸ㄠ⠲㠊̸⸴‰‰〴�(㌀崠告‰‰‰ༀ〰Ċ嬨�⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀尰㠷〰〃㤮㜱㠶〰㐀i䄴⸲㜠〠〠ㄠ㐱⸶㜵㠠㘷⸹㔸㠳〰‰‱㈮ਃ㤮㜱㠶〰㐀(崱㔠ⴵ⸲㐹㐠呭ਜ਼⠶㐠ⴳ⸹〰〰༰々tis1⸷ㄸ㘰〴�Ĳ⥝⁔䨴⁔洊嬨the ⥝⁔䨊ㄠ〠〠ㄠ㜮ㄴㄵ㔮㈴㤴⁔洊嬨sQ㠵⸰【㤮㜱㠶〰㐀�䨊ㄠ〠〠ㄠ㌮㜳㐳㌮㤴〶⁔洊嬨⥝⁔䨊ㄠ〰〰ㄵ㔮㈴㤴⁔洊嬨sQ㠳⸲ㄠⴱ⸹⸷ㄸ㘰〴�ȩ崠告‰‰‱ㄠ⥝⁔䨊⽆〠ㄠ呦⁔洊嬨aiv*〠〠ㄠ㐱⸶㜵㠠㘷⸹㔸㠳㌮⸊̹⸷ㄸ㘰〴�*ㄠ㈰⸵‰‰‱‴ㄮ㘷㔸―‰‱㤰〮㠲挰܀㐷‱嬨̹⸷ㄸ㘰〴�⼰ጀЀऩ崠告ਯ䘰‱⁔昊ㄠ〠〠ㄠⴱㄮ㜹㌶㈮㘲㐷⁔洊嬨:㠰‱ⴱ⸹⸷ㄸ㘰〴�䄴⸲㜰』〱　 獣〇1㆐〹⸷ㄸ㘰〴�ਜ਼⠀B㔶㤴ㄮ㌱㔹⁔洊嬨\〸㜰〰참㈮Ѐi䨴⸲㜠〠〠ㄠ㐱⸶㜵㠠㘷⸹㔸㠳〰‰‱㈮ૌ㠲⸄�ⰰጀЀᄀ̀ఀࠀ܀ༀࠀȹ㌵㟌㠲⸄aivfi⸲㐹㐠呭ਜ਼⠀ༀ々*ㄱ洊ねਜ਼⠀ᔀጸ〮ૌ㠲⸄�Ġ〠〠ㄠⴰ܀‰‱ㄱ㔀(ㄲ⥝⁔䨊ㄠ〠〠㔱′⸶㈴㜠ⴲ⸶㈴㜀⌀⁔洊嬨upu〰〴참㈮Ѐiༀ〰』〰Ԁ‰‰‱‰』(Ԁ‱ㄠ捭ਰ洊嬨suq〴㐰〰స㈮ЀQ‰‰‱〇*〠ㄠⴱㄵ�〱㈩崠告‰‰‵ㄠ㈮㘲㐷㈮㘲㐷T*呭ਜ਼⠀ဇ⸱㈰〰స㈮Ѐiഀة崠告吊儊焊㜮㤷〱‰‹⸱〰స㈮Ѐi⁔洊嬨tto ⥝〰〓eB⠀ㄴ㠲⸄�Ġⴲ⸶㈴㜠呭ਜ਼⠀ഀਜ਼⠀‰‰‱ㄷ⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀‱‱㈮ૐ㐴㌄�Ġ㐰〰㡁ⴵ⸲㐹㐠告‰‰‱‱㔮㤶ㄸ㈮㘠吲⸴　㌲〴㐳Ѐm ⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㔶㤴ㄮ㌱㔹⁔洊嬨\〲　㌲〴㐳ЀQ v4‰‰‱″⸷㌴㌠ⴳ⸹㐰㘠呭ਜ਼⠀ᄀ᐀崠告‰⠀ᔀĸ㔮㈳‰‰′〴㐳ЀQ㔮㈴㤴⁔洊嬨nuб㈱.㈰㐴㌄�ഀ崠告‰‰‱ㄷ⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀瀹㜰㐠㈰㐴㌄�Ġ〠〠ㄠⴱ㘮㈷㐸ㄮ㌱㔹⁔洊嬨each ⥝⁔䨊ㄠ〠〠ㄠⴱ㌮㠰㘵ㄮ㌱㔹⁔洴ㄮ㌱㔹⁔洊嬨Ԯ〵㜮ૐ㐴㌄�Ġਜ਼⠀ㄠⴰ⸲㈰㔀(ࠀᔀ崠告‰‰〰Bㄳ′〴㐳ЀQ㔮㈴㤴「is‰‱㤰〮㠲挰܀㤮㌹㘮ૐ㐴㌄�⼰ጀЀऩ崠告ਯ䘰‱⁔昊ㄠ〠〠ㄠⴱㄮ㜹㌶㈮㘲㐷⁔洊嬨:ༀဴ㐳Ѐ3㐮㈷〰༰ㄴi�ੳ挰܀〠ㄠㄲ⸊᠂㈰̀쀍)r⥝⁔䨊䕔ੑੱᔠ〠ㄹ〰⸸㈠獣〇M》。㈰̀⼰ጀЀऩ崠告ਯ䘰‱⁔昊ㄠ〠〠ㄠⴱㄮ㜹㌶㈮㘲㐷⁔洊嬨:〔㈮ਘȲ〃3㐮㈷〰Ł〱　 獣〇M㜮㈳㘮ਘȲ〃[⠀B㔶㤴ㄮ㌱㔹⁔洊嬨\〸㜰〰ᰮ㤶㠱〰㐀i䬰‰‰‱‴ㄮ㘷㔸‶㜮㤵㠸㌰〠〠ㄲ⸊ᰮ㤶㠱〰㐀Ġ〠〠ㄠⴱ㘮㌵㌠ⴲ⸸〹㘠呭ਜ਼⠀㍱〳㠳㤴㌴⸹㘸〴�*ㄠ㈰⸵㘴㌮㤴洊嬨nul⸲㈴〰ᰮ㤶㠱〰㐀ķ〰Ԁ‰‰‱‰』Bㄱ洊〠朊䉔⁔䰊⽆〠〰崠告‰‰‱‷⸱㐱㔠ⴵ⸲㐹㐠呭ਜ਼⠀ᔀĸ㔮㘰〱㔜⸹㘸〴Q㝁 崠告ਯ䘰‱⁔昀‰‰‱ㄸ⸸㜱ㄠⴱ⸳ㄵ㤠呭ਜ਼⠀␀܀〇u1㤠㐮㐳㐮㤶㠱〰㐀ķ〹⁔洊嬨呭ਜ਼⠀က⸱㈰㤮㐳㐮㤶㠱〰㐀ķ′⥝⁔䨊ㄠ〠〠ㄠⴱ〮㌹㈲ㄮ㌰㠸⁔洊嬨Ōਯ䘰〜⸹㘸〴Q㜰�〈1㐠呭ਜ਼《⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㘴⸳㘰㌹㐳㐮㤶㠱〰㐀�《⥝⁔䨊ㄠそ⁔䨊ㄠ〨sQ0㜵⸊ᰮ㤶㠱〰㐀Q‰‰‱ㄶ⸲㜴㠠ⴱ⸳ㄵ㤠呭ਜ਼⠀ЀԀሀጀ崠告‰‰‱ㄳ⸸〶㔠ⴱ⸳ㄵ㤠呭㐠⁔洊嬨upT㍱〰㈴⸴㌴⸹㘸〴Q㜱㌳㘠〠呭ਜ਼⠀⼮㘷‰‱‷⸸㔲㤠ⴱ⸳〸ⴠ〠ㄲ⸊섶耰ᄀ܀㌯䘰‱⁔昊ㄠ〠〠ㄠ܀Ѐ〄 ⥝⁔䨊ㄠ〠〠ㄠⴱ㌮㈹⸳⁔䨊⽆〱㚀】�ࠀఀ㔮㈴㤴‱‰‰‱‴ㄮ㘷㔸‶㜮㤵㠸㌰㜮㈴〮ㄳ‰ㄶ耰ᄀ(㌀崠告‰‰‱〲㌴‹*〱㚀】l㔀崠告䨊ㄠ〠〠ㄠⴹ⸰㤷⁔洊嬨nu(㈶‹*〱㚀】�呭ਜ਼⠀ЀԀሀጀ崠告‰‰‱ㄳ⸸〶㔠ⴱ⸳ㄵ㤠呭㈩崠告‰‰‱㜮〴㠷㉔昊ㅛ⠀‰ㄶ耰ᄀT〰ᐠ〠ㄠ㈰⸵㘴㌮㤴〶⁔洊嬨T*ⴶ⸵㔸㌠〰〰Ƞ〠〠ㄠⴠ㔷⸶㜀⁔洊嬨upܮㄷ㜮ㄳ‰ㄶ耰ᄀ*ㄠ㈰⸵㘴㌮㤴洊嬨nu0⸹㘹〰〠〱㚀】�〳q⸸〹㘠呭㌮㤳㌵⁔〰ఀࠀ⁔洊嬨〠ㄠ㈰⸵㘴㌮㤰Ԁ܀㈱㘹〰う〱㚀】�ࠀ܀ऀ崠告‱㈮ਟ‱㤲〰】�‱′〮‰‰‱‰』Bㄱ洊〠朊䉔⁔䰊⽆〠〰崠告‰』(、ਜ਼⠀B㔶㤴ㄮ㌱㔹⁔洊嬨\〸㜰〰̸⸹⥝‰〴�࠻ਰ‰‰‰‱‴ㄮ㘷㔸‶㜮㤵㠸㌰〠〠ㄲ⸊̸⸹⥝‰〴Q‰‰‱ㄶ⸳㔳㈮㠰㤶⁔洊嬨.焲ㄈ㠮㤩崠〰㐀�‱′〮㔶㐠ⴳ⸹㑭ਜ਼⠀܀̮〴B㠮㤩崠〰㐀�Ѐᨀ䄰̀Ԁༀࠀ㤮㔴‴⸴㌸⸹⥝‰〴�)㈩崠告‰‰‱㤮〹㜶㘮㔵㠳⁔洊嬨new⠀ᔀĸ㔮㜴㜮ਃ㠮㤩崠〰㐀�ࠀ܀ऀ崠吴㤸〸⸊̸⸹⥝‰〴�*㈩崠告‰‰‱⸳㤲㈠ⴱ⸳〸㠠呭ਜ਼⠃〠ㄵ〰̸⸹⥝‰〴�ㄶ⸲㜴㠠ⴠ呭ਜ਼⠓ ⥝⁔䨊ㄠ〠〰〄 ⥝⁔䨊ㄠ〠〠ㄠⴱ㌮〮㜱㠮ਃ㠮㤩崠〰㐀�‴〰〸䄭㔮㈴㤴⁔䨊ㄠ〠〠ㄠㄵ⸹㘱㠠ⴲ⸶㈴⁔࠸⸹⥝‰〴�㤰0䨊ㄠ〠〠ㄠㄵ⸹㘱㠠ⴲ⸶㌮㔸〰̸⸹⥝‰〴�䄠⥝⁔䨊⽆〠ㄠ呦 ⥝⁔䨊ㄠ〰〄g⥝†ⴶ⸵㔸㌠呭ਜ਼⠀ܱ‰‰‱‵㜮㘷‰‱‷⸸㔲㤠ⴱ⸳〸㠮㤵㠳″㠮㤩崠〰㐀*ⴱ〭ㄮ㌱㔹㌮㜳㔴㔮㈴㤴⁔洊嬨tha(』hree ⥝⁔䨊ㄠ〰〠〠ㄲ⸊Р吷㘰〴�Ƞⴱ⸳ㄵ㤠呭ਜ਼⠄⸹㌶㔠ⴳ⸹㐰㘠呌ਯ䘰‱⁔昊ㄠ〠〰ㄷhQ‰‰‱㈮㠰㤶⁔洰㈳Ġ〠〠ㄠ㔷⸶㜠〠ㄠ㜮㠵㉝⁔䨊⽆ㄠㄠ呦‰‸⸷㈾㸊Р吷㘰〴�崠告⁊ሀ. ⥝‷ㄶ㤶⸊Р吷㘰〴�ȍ)r⥝⁔䨊䕔ੑੱ⸹㜰ㄠ〠㠵⸷㐰〰Р吷㘰〴�*ㄠ㈰⸠〠〠ㄠ〰ༀ⸱ㄠ捭ਰ⸵㘹‴⁔㜶〰㐀p〰ऀ崠告‰‰‱‹⸰㌳㘠〠呭ਜ਼⠀ༀጀЀ崠告‰‰‱‱〮㜹〵‱㠠㐠吷㘰〴� ⥝⁔䨊ㄠ〠〠ㄠ㌹⸳㈆ning ⥝—〔〴⁔㜶〰㐀)㜀ጀ崠告‰‰‱″〄e ⥝⁔䨊ㄠ〳ⴱ㐶㘔〴⁔㜶〰㐀Q㤮〹㜠呭ਜ਼⠁〮㌹㈲ㄮ㌰㠸〰Ѐᤀ崵㐠⸷㠳㤲㘠⸴ⴹ⸴㜴㘠ⴲ⸸〹㘠呭ਜ਼⠀ᔀༀ�*ㄠ〠〠呭ਜ਼⠡⥝⁔䨊䕔ੑੱਵ⸵㜵㔲⸸㘹ᘠ⸴ⴹ⸴㜴㘠ⴲ⸸〹㘠呭ਜ਼㤀ᔀༀ�ሀ. ⥝′㜮㜴ㄷ㐰㠠ⴱ⸳〸㠠呭ਜ਼⠀ਜ਼⠈ЀЀ崠告‰ⴲ㘠㜮㤶e,(〰㌀〱r⥝⁔䨊䕔ੑੱ⸹㜰ㄠ〠㠲㌄〴 ⥝⁔䨊ㄠ〠〠〠ㄠ㈰⸵㘴㌮㤴〶⁔洊嬨㤴⁔洊嬨sQ㠱㈩崵㤀〰崠告‰‰″⸹㌳㔠吰「⠀ᔀĸᐨtoB㘸〲告‰‰‱‴ㄮ㘷㔸‶㜮㤵㠸㌰〰〷ㄴ㘀Ѐᴀ崠告‰‰‱〰『l䕔ੑੱᔠ〠ㄹ〰⸸㈠牧〰》‰✮Ѐᴀ々㤠呭‰�ੳ挰܀　Њe,]⁔䨊ㄠ〠〠ㄠⴱ㘮〰㐵㔮㌮㔹㤲ㄮ㌰T〰ᐠ〠ㄠ㈰⸵㘴㌮㤴〶⁔洊嬨T*ⴶ⸵㔸㌠〰〰Ƞ〠〠ㄠⴠ㔷⸶㜀⁔洊嬨upȹ⸳‹ㄷatĭ㈮㘲㐷⁔洊嬨(〃ut〰Ԁༀࠀ㈴㔸㸊atevid]⁔䨊ㄠ〰〖lĲ⥝⁔䨊ㄠ〠〠ㄠⴱㄠⴱ⸳ㄵ㤠呭ਜ਼⠀␀܀ㄮ㌱㔹⁔洊嬨~〴 ⥝⁔䨊ㄠ〠〠『aq㌀Ѐ崠告‰‰‰ഀ崠吳〮㐶ᐳ⸴з㐶㈮㠰㤶⁔洊嬨st��‱‰‰⁔洊嬨℩崠告吊儊焊㔮㔷㌳㍱ਵ㠰㈴㌮㐄㜴㘠ⴲ⸸〹㘠呭ਜ਼　ᔀༀ�ਜ਼⠄⸹㌶㔠ⴱᔀ洊嬨)ㄠ〠〠ㄠ㔷⸶㜠〠告‰‰‱′㘮〸㌸㘮㔶㔴⁔洊嬠ㄳ　〃-‰‰‱ㄮ㐷‰⁔洊嬨)〮㈲〵ㄮ㌰㠸⁔洊嬨ĕ*ㄠ㈶⸰㠳㠠ⴶ⸵㘵㐠呭ਜ਼㠮㠵㔸〱″㠷⸴㌹‶㜰⸶㠰㉔䨊ㄠ〠〠ㄠ㐱⸶㜵㠠㘷⸹㔸㠳㠠呭㜰ㄠ㌸㜮㐳㤠㘷〰〰㌀嵀‰‰‰ԁ〮㌹㈲ㄮ㌰㠸⁔洊嬨Ġ⸴㌲〠〰崠告‰‰‱‵⸷㘱㘠〠呭ਜ਼⠀㘮㠴㌷〱″㠷⸴㌹‶㜰⸰〰【ఀ䨊ㄠ〠〠ㄠ㌮㜳㐳㌮㤴〶⁔洊嬨of ⥝⁔䨊ㄠ〨s ㈮㌶㌀崠告㌶㠰㉔䨊告‰‰‱′⸹㈳㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀༠〠ㄠ㐮㤲⥝⁔䨊䕔ੑੱ⸲㜰㈹㌴ ⥝⁔䨊ㄠ〠〠ㄠ㌮ㄲ㤷‰⁔洊嬨nAe, ⥝⁔䨶⸲㜴㠠ⴱ⸳ㄵ㤠呭ਜ਼⠀ЀԀሀጀ崠告‰‰‱ㄳ⸸〶㔠ⴱ⸳ㄵ㤠呭㐠⁔洊嬨ਜ਼⠀B㔶㤴ㄮ㌱㔹⁔洊嬨q⸱‰‰〲ㄮ㌰㠸⁔洊嬨1䠰〰㤠〠〠ㄠ㐱⸶㜵㠠㘷⸹㔸㠳〰ℂㄮ㌰㠸⁔洊嬨䰰〴ah ⥝⁔䨊ㄠ〠〰〄*ㄠㄵ⸹㘱㠠ⴲ⸶㈴㤷ⴴ⸱㘸㈠ⴲ⸶㈴㜠呭ਜ਼⠀䨊ㄠ〠〠ㄠ〮㜳㤷ㄮ㌱㔹⁔洊嬨tر㘮㠲㐳㈮㘲㐷⁔洊嬨 ⥝′㝭ਜ਼⠀崠告‰‰〰Ѐ呭ਜ਼⠀ဇ⸸en\〱㈩崠告‰‰‱〮㈲〵ㄮ㌰㠸⁔洊嬨ionC㘰〳ac ⥝⁔䨊ㄠ〠〠ㄠ〮ㄱ㌸ㄮ㌱㔹⁔洊嬨aion*〠〵〰㌀Ԁሀ㘀Āة崠告吊儊焊㜮㤷〱‰‰⸵㜠ⴴ⸱㘸㈠ⴲ⸶㈴㜠呭ਜ਼⡜〱㈩崠告‰‰‱‹⸰㐰㜠ⴱ⸳〸㠠呭ਜ਼⠀ༀጀࠀᄀ܀㤮㜵㌱Ƞⴱ⸳〸㠠呭ਜ਼⠀㘀Āة崠告吊儊焊㜮㤷〱‰‱㈩㘳㠱Ƞⴱ⸳〸㠠呭ਜ਼⠀‰‱′〮㔶㐠ⴳ⸹㐰㘠呭ਜ਼⠹㐠呭ਜ਼⠀ᔀਰ‸㐭㐮ㄶ㠲㈮㘲㐷⁔洊嬨̮㤳㌵⁔〰నs 〄⸱㘸㈠ⴲ⸶㈴㜠呭ਜ਼⠀䨊ㄠ〠〠〰నs 〱㘅洊嬨se尰ㄲ⥝⁔䨊ㄠ〠〠〰ͅ吊儊焊㜕‰‱㤰〮㠲朰〰ଠ℀ᔀ崠〰々㤠呭‰�ੳ挰܀」s ⥝‷⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀Ĺ㌴㜰〕 ⥝⁔䨩�《⥝⁔䨊ㄠ〠〠ㄠ㈰⸵㘴㌮㤴〶⁔洊嬨T)㈩崠告‰‰‱崠告‰‰ ⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㘴⸱㌲㜰〕 ⥝⁔䨀䨊ㄠ〠〠ㄠ〮㜳㤷ㄮ㌱㔹⁔洊嬨t嘵〰〰܀崠告̰܇ㄮ㌱㔹⁔洊嬨a‰「⠀ᔀĄs ⥝⁔䨊〷.⽆〠ㄠ呦㘱㘠〠呭ਜ਼⠀〰㠱呭呭ਜ਼⠀‰Ġⴱ㘶〰ࠀఀࠀ㈮㐶㤱㜃⁔洊嬨g4‰‰‱‰⸷㌹㜠ⴱ⸳ㄵ㤠呭ਜ਼⠀ༀ‱‱〮ㄳ㌠呭ਜ਼⠀ऀㄠ〮㜳㤷ㄮ㌱㔹ㄠ㈮㘲㐷㈮㘲㐷⁔洊嬨t*〮㜳㤷ㄮ㌱㔹㘩崠告吊儊焊㜮㤷〱‰‰㠮㠳㔰〰܀崠吰〄 ⥝⁔䨊ㄠ ⤱〰〦。㐷⁔洊嬨o脶㐴〰ᔀ崠告ਰࠀ‰‱‴⸹㈩崠告吊儊焊㜮㈴ㄱ〰〕 ⥝⁔䨊〭㘮㔵㠳‰〰。′⸶㈴㜠ⴲ⸶㈴㜹㐠呭ਜ਼⠀ᔀ〲㤳㐀ᔀ崠告ਰࠀఀࠀ嬨d�〝㘇ല〃p㜰ༀ‰⸷㌹ㄠ〠〠ㄠ㔮㐷‰⁔洊嬨in ⥝⁔䨊⽆㌠ㄠ呦‰‰‱㈱櫓܍㈰̀Fሀ. ⥝㈰㐸ㄇല〃� ⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㘳⸰〰㐊܍㈰̀ူ〆琠ⴳ⸹㐰㘠呭ਜ਼⠀⌀‵㜮㘷‰‱‷⸸㔲崠㐠ㄠⴷ⸹㌸㈠ⴲ⸶⸱㈴㐰〷ല〃k⸳〸㠠呭ਜ਼⠀㌀崷⸲㐰⸱㌷ല〃p〰ᄀༀAT〰ᐠ〠ㄠ㈰⸰〚3〃du(〮㌰⸱㌷ല〃p䨊ㄠ〠〠ㄠ〮㜳㤷ㄮ㌱㔹⁔洊嬨tȮ㜹㘰〰㜍㈰̀ɔㄲ⥝⁔䨊ㄠ〠〠ㄳ㐮㤳㘵㌮㤴〶‱〱㈩崠告㘮㈷㐸‰Ԁ܀㜰㘱㈮ㄳ㜍㈰̀ጶ㠰㉔䨊告‰‰‱′⸹㈳㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀ༀጀБ⸴〰།㈰̀Ƞ〰ࠀఀࠀ⸶Їല〃-吰ⴱ⸳ㄵ㤳⸷㌵㐠ⴵ⸲㐹㐠呭ਜ਼⠀ༀጀԀ〰ༀጀܮ㔶㤴ㄮ㌱㔹⁔洊嬨(ᴶ1⸱ ⥝⁔〰䀀ᔀༀഀ〱⸴〱㐀㤮崠吀崠告‰‰‱″㤮㌲܀ऀЀ܀ᔀༀഀ〱㐲ㄴ1⸱ ⥝⁔M㔮㈴㤴⁔洊嬨nuℶ㔹㤮崠吰〄 ⥝⁔䨊ㄠ〰」p㠮〆1⸱ ⥝⁔尰』o1㐠呭ਜ਼⠀ᔀĹ吹㈹1⸱ ⥝⁔尰܀ᔀༀഀ〰〃㠳㤴㤮崠吀ⴵ⸲㐹㐠⁔洊嬱㜰々*ㄱ洊〠朊䉔⁔䰊⽆〠ㄱn㜮㔶㤴ㄮ㌱㔹⁔洊嬨B㔵㜠呭ਹ⸱ ⥝⁔尰܀‱′㘮〸㌸㘮㔶㔴⁔洊嬰㜰〲 㤮崠呜洊嬨S⸶㜠〠〱㈩崠告‰‰ ㄠ〠〠ㄓe ⥝⁔䨊ㄠ〠〠ㄠ⸷㤰ㄲ⥝㠸㌹㐹⸱ ⥝⁔�Ԁༀ崠告‰‰‱ㄶ⸰㈴ㄲㄶ1⸱ ⥝⁔䄰ㄲ⥝⁔䨊ㄠ〠〠ㄠⴱ㘮〲㐱㤳〹⸱ ⥝⁔rQr(ᴶe㤸〰】�吠呭ਜ਼⠀༠㘷⸹㔸㠠呭ਜ਼⠀ⴱ⸳ㄵ㤠嬨d�ㄴ㠲㐲〰尰㐹㠰〰ᄀܰༀ‰⸷㌹ㄠ〠〠ㄠ㔮㐷‰⁔洊嬨in ⥝⁔䨊⽆㌠ㄠ呦‰‰‱㈠〠〴㈰ぜ〴㤸〰】F告ਯ䘳‱⁔昊ㄠ嬨. ⥝㐱㤹〰㜀й㠰〰ᄀrQr⥝⁔䨊䕔ੑੱ⸹㜰ㄠ〠㘱㤳〱㜀й㠰〰ᄀ�Ѐᨀ䄠〠〠ㄠ㔓 ⥝′㐮㤳㘵㌮㤴〶⁔䰊⽆〠ㄠ‰‰‱‴ㄮ㘷㔸‶㜮㤵㠸㌸〰̸㌹㐰й㠰〰ᄀ�Ԁༀ崠告‰‰‱ㄶ⸰〲ㄶ㤰〰e㤸〰】a䜮㔶㤴ㄮ㌱㔹⁔洊嬨B㔱㈲㔷e㤸〰】�Āة崠告吊儊焊㜮㤷〱‰‰㜰〶㐴〰〄㤸〰】a㼀‱‰㈰㐳܀吊ㄠ呌ਯ䘰‱〰《⥝⁔䨊ㄠ〰ༀㄮ㌱㔹⁔洊嬨{㈔〴⁔㜶〰㐀�‱′〮㔶㐠ⴳ⸹㑭ਜ਼⠀ੂ

Mㄮ㌱㔹⁔洊嬨Ȱ퀰　й㠰〰ᄀ〰《⥝′㐮㤳㘵ㄠⴱ⸳ㄵ㤠呭ਜ਼⠀␀܀ㄮ㌱㔹⁔洊嬨(ᴶĮ㠰㤀崠㜮㔶㤴〷)⸳ㄵ㤠〠呭ਜ਼⠰〰Ĺ〰〰〰〰Ĺ〳㜠ㄵ㐲㠰㐷㐶㈮㠰㤶⁔洊孔䨊⽆ㄠㄠ呦‰ㄷ� 嬪 嬧�Ġ呦‰‰‱㈱ꬠ〠〠㜮㤷〱‴⬀ة崠告㔀Q⁔昊ㄠ〠〠ㄠⴲ㈮㠴〱㜰〰崠告‰‰‱″㈀Q⁔昊ㄠ〠〠ㄠⴲ《ㄷ〰《

Expert Systems With Applications 232 (2023) 120837

9

Fig. 5. Flow chart of MPMA-QL.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

10

The difference between MPMA and MPMA-QL is mainly the Q-
learning process as presented in Algorithm 6. The complexity of the Q-
learning process is O(3), since the only operation required is to obtain
the maximum Q-value or a random one from A of size 3. As a result, the
complexity overhead of MPMA-QL is only O(3) = O(1) extra computa-
tions per generation when compared to MPMA. In fact, MPMA-QL may
even achieve better results with even less computation time than MPMA,
as the Q-learning process can assist the meta-heuristic algorithm to
converge quickly. Experimental evidence for this fact is provided in
Section 4.5.

4. Computational experiments

In this section, a series of computational experiments were con-
ducted to evaluate the performance of the developed MPMA and MPMA-
QL, in which two state-of-the-art meta-heuristics and their Q-learning-
based improvements were selected as rivals. All algorithms were
implemented in Python 3.8 and run on an Apple M1 CPU (3.20 GHz/
8.00 GB RAM).

4.1. Test instance settings

To examine the algorithm performance for solving the proposed
DAHFSP-FPM, 30 instances (depicted as P× F× S) were randomly

generated based on the combination of P ∈ {10,15,20,25,30}, F =

{2,4}, S ∈ {2,4,6}, in which P1
il, P

2
g and P3

g were randomly taken integer
values from the interval [1,100], each product consists of 2 to 5 com-
ponents, and each stage of the hybrid flow shop consists of 2 to 5 parallel
machines. Besides, it is assumed that deterioration rates and mainte-
nance durations were known in advance: ε1, ε2 and ε3 were set to 0.1,
0.05 and 0.15 respectively, and t1PM, t2PM, t3PM were all 10.

4.2. Performance metric

The relative percentage deviation (RPD) metric (Mao, Pan, Miao, &
Gao, 2021) was introduced to measure the performance of MPMA-QL
and five other competitive algorithms, which is defined as follows:

RPD =
Calg − Cbest

Cbest
(38)

where Calg denotes the makespan obtained by a certain optimization
algorithm on an instance, and Cbest represents the optimal makespan
among the results obtained by all the competing algorithms on that
instance. Each algorithm under each test instance was carried out 10
times independently to achieve consistent and reliable results, reducing
the variance caused by the randomness. Finally, the average RPD
(aRPD), the best RPD (bRPD), and the standard deviation of RPD (sRPD)
were calculated respectively to evaluate the solution quality of the al-
gorithm.

4.3. Key parameter settings of MPMA-QL

There are five key parameters of MPMA-QL, i.e., population size n,
upper limit of cumulative running time T and Q-learning-related three
parameters α, γ and ε. We selected four levels for each parameter to
analyze the impact of different parameter configurations on the per-
formance of MPMA-QL, i.e., n = {40,60,80,100}, T =

{100,120,150,180}, α = {0.1,0.2,0.3, 0.4}, γ = {0.7,0.8,0.9, 1}, ε =

{0.1,0.2, 0.3, 0.4}. There are a total of 45 parameter combinations. We
picked an orthogonal array with 16 parameter combinations based on
Taguchi’s approach to lessen the complexity of the parameter analysis,
where instance 20 × 2 × 6 was chosen as the test instance. To assess the
sensitivity of the above key parameters, MPMA-QL with each parameter
combination was run 10 times, and the mean value of the makespan over
ten independent runs was determined as the response variable (RV), as
shown in Table 2. Besides, Table 3 shows the significant rank of
parameter combinations, and then Fig. 6 intuitively shows the factor
level trend of parameters.

From Table 3, it is obvious that T is the most significant parameter,
which reflects that a proper maintenance cycle can greatly improve
deteriorating effects. n plays the second most important role, which
means that a proper population size can improve the solution perfor-
mance of metaheuristics. Regarding Q-learning-related parameters, ε, α
and γ play the third, fourth and fifth roles respectively. Based on the RV
results in Fig. 6, a promising parameter combination is suggested below:
n = 100, T = 100, α = 0.3, γ = 0.8, ε = 0.2, which will be used in the
subsequent experiments.

Table 2
Orthogonal experiment settings of MPMA-QL.

Trial number Factor level RV

n T α γ ε

1 40 100 0.1 0.7 0.1 1156.55
2 40 120 0.2 0.8 0.2 1159.45
3 40 150 0.3 0.9 0.3 1165.75
4 40 180 0.4 1 0.4 1170.46
5 60 100 0.2 0.9 0.4 1155.32
6 60 120 0.1 1 0.3 1160.09
7 60 150 0.4 0.7 0.2 1159.29
8 60 180 0.3 0.8 0.1 1170.84
9 80 100 0.3 1 0.2 1151.59
10 80 120 0.4 0.9 0.1 1159.04
11 80 150 0.1 0.8 0.4 1159.28
12 80 180 0.2 0.7 0.3 1175.28
13 100 100 0.4 0.8 0.3 1149.14
14 100 120 0.3 0.7 0.4 1149.37
15 100 150 0.2 1 0.1 1157.40
16 100 180 0.1 0.9 0.2 1163.39

Table 3
Response and rank of parameters for MPMA-QL.

Level n T α γ ε

1 1163.05 1153.15 1159.83 1160.12 1160.96
2 1161.39 1156.99 1161.86 1159.68 1158.43
3 1161.30 1160.43 1159.39 1160.88 1162.57
4 1154.83 1169.99 1159.48 1159.88 1158.61
Delta 8.22 16.84 2.47 1.20 4.14
Rank 2 1 4 5 3

Fig. 6. Factor level trend of MPMA-QL for each key parameter.

ExpertSystemsW
ithApplications232(2023)120837

11

Table 4
Comparative results of six algorithms on aRPD, bRPD,.sRPD

Instance SFLA QSFLA ABC QABC MPMA MPMA-QL

aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD

10 × 2 × 2 0.0122 0.0021 0.0055 0.0112 0.0000 0.0058 0.0085 0.0000 0.0053 0.0099 0.0021 0.0048 0.0037 0.0000 0.0045 0.0019 0.0000 0.0037
10 × 2 × 4 0.0254 0.0132 0.0066 0.0137 0.0026 0.0066 0.0218 0.0090 0.0070 0.0191 0.0086 0.0075 0.0035 0.0000 0.0038 0.0013 0.0000 0.0027
10 × 2 × 6 0.0083 0.0000 0.0030 0.0052 0.0000 0.0031 0.0073 0.0016 0.0023 0.0054 0.0000 0.0034 0.0039 0.0000 0.0037 0.0026 0.0000 0.0036
10 × 4 × 2 0.0156 0.0013 0.0140 0.0160 0.0000 0.0104 0.0020 0.0000 0.0045 0.0056 0.0000 0.0059 0.0009 0.0000 0.0017 0.0009 0.0000 0.0017
10 × 4 × 4 0.0079 0.0036 0.0036 0.0077 0.0000 0.0058 0.0022 0.0000 0.0033 0.0007 0.0000 0.0015 0.0000 0.0000 0.0000 0.0004 0.0000 0.0011
10 × 4 × 6 0.0031 0.0000 0.0093 0.0019 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15 × 2 × 2 0.0217 0.0117 0.0078 0.0088 0.0000 0.0063 0.0153 0.0049 0.0096 0.0201 0.0033 0.0091 0.0045 0.0000 0.0070 0.0044 0.0000 0.0057
15 × 2 × 4 0.0166 0.0054 0.0071 0.0083 0.0000 0.0076 0.0184 0.0097 0.0056 0.0140 0.0000 0.0096 0.0048 0.0000 0.0063 0.0034 0.0000 0.0039
15 × 2 × 6 0.0195 0.0057 0.0103 0.0135 0.0054 0.0037 0.0132 0.0001 0.0079 0.0137 0.0029 0.0054 0.0026 0.0000 0.0039 0.0019 0.0000 0.0022
15 × 4 × 2 0.0567 0.0196 0.0216 0.0332 0.0033 0.0177 0.0240 0.0063 0.0095 0.0183 0.0055 0.0072 0.0063 0.0000 0.0075 0.0054 0.0000 0.0092
15 × 4 × 4 0.0243 0.0040 0.0144 0.0171 0.0000 0.0123 0.0136 0.0019 0.0079 0.0110 0.0000 0.0072 0.0050 0.0000 0.0065 0.0044 0.0000 0.0051
15 × 4 × 6 0.0246 0.0117 0.0080 0.0181 0.0000 0.0127 0.0176 0.0089 0.0067 0.0164 0.0000 0.0073 0.0061 0.0000 0.0073 0.0013 0.0000 0.0021
20 × 2 × 2 0.0186 0.0084 0.0066 0.0105 0.0000 0.0084 0.0157 0.0000 0.0070 0.0143 0.0000 0.0106 0.0051 0.0000 0.0058 0.0046 0.0000 0.0059
20 × 2 × 4 0.0211 0.0084 0.0080 0.0153 0.0027 0.0109 0.0248 0.0079 0.0096 0.0179 0.0045 0.0101 0.0024 0.0000 0.0020 0.0012 0.0000 0.0026
20 × 2 × 6 0.0192 0.0107 0.0083 0.0157 0.0000 0.0111 0.0180 0.0012 0.0087 0.0193 0.0041 0.0100 0.0050 0.0000 0.0055 0.0031 0.0000 0.0052
20 × 4 × 2 0.0532 0.0228 0.0147 0.0298 0.0141 0.0164 0.0307 0.0090 0.0136 0.0316 0.0237 0.0101 0.0067 0.0000 0.0086 0.0026 0.0000 0.0044
20 × 4 × 4 0.0374 0.0110 0.0159 0.0251 0.0115 0.0118 0.0291 0.0151 0.0113 0.0229 0.0107 0.0078 0.0088 0.0000 0.0121 0.0068 0.0000 0.0092
20 × 4 × 6 0.0269 0.0046 0.0146 0.0249 0.0020 0.0119 0.0223 0.0022 0.0095 0.0226 0.0017 0.0107 0.0050 0.0000 0.0070 0.0035 0.0000 0.0048
25 × 2 × 2 0.0067 0.0022 0.0035 0.0078 0.0004 0.0055 0.0088 0.0043 0.0044 0.0091 0.0006 0.0051 0.0028 0.0000 0.0036 0.0020 0.0000 0.0034
25 × 2 × 4 0.0132 0.0047 0.0055 0.0089 0.0010 0.0066 0.0136 0.0040 0.0055 0.0153 0.0000 0.0093 0.0060 0.0000 0.0048 0.0017 0.0000 0.0033
25 × 2 × 6 0.0165 0.0040 0.0076 0.0139 0.0021 0.0074 0.0166 0.0097 0.0053 0.0139 0.0000 0.0101 0.0057 0.0000 0.0053 0.0016 0.0000 0.0032
25 × 4 × 2 0.0306 0.0107 0.0153 0.0219 0.0034 0.0144 0.0175 0.0043 0.0113 0.0216 0.0081 0.0102 0.0073 0.0000 0.0082 0.0021 0.0000 0.0055
25 × 4 × 4 0.0356 0.0228 0.0092 0.0217 0.0000 0.0095 0.0206 0.0000 0.0117 0.0245 0.0064 0.0105 0.0087 0.0000 0.0099 0.0020 0.0000 0.0029
25 × 4 × 6 0.0350 0.0000 0.0146 0.0231 0.0041 0.0113 0.0263 0.0127 0.0112 0.0217 0.0000 0.0124 0.0060 0.0000 0.0077 0.0051 0.0000 0.0085
30 × 2 × 2 0.0078 0.0026 0.0035 0.0090 0.0032 0.0033 0.0084 0.0000 0.0052 0.0108 0.0038 0.0049 0.0040 0.0000 0.0044 0.0016 0.0000 0.0029
30 × 2 × 4 0.0155 0.0076 0.0059 0.0155 0.0072 0.0050 0.0190 0.0010 0.0085 0.0164 0.0064 0.0056 0.0072 0.0000 0.0104 0.0026 0.0000 0.0043
30 × 2 × 6 0.0119 0.0061 0.0071 0.0083 0.0000 0.0065 0.0086 0.0037 0.0027 0.0065 0.0017 0.0038 0.0023 0.0000 0.0025 0.0019 0.0000 0.0030
30 × 4 × 2 0.0439 0.0163 0.0157 0.0340 0.0086 0.0137 0.0352 0.0226 0.0114 0.0255 0.0064 0.0152 0.0091 0.0000 0.0086 0.0031 0.0000 0.0058
30 × 4 × 4 0.0316 0.0144 0.0131 0.0277 0.0176 0.0106 0.0266 0.0100 0.0068 0.0250 0.0000 0.0131 0.0054 0.0000 0.0041 0.0014 0.0000 0.0022
30 × 4 × 6 0.0436 0.0094 0.0173 0.0316 0.0157 0.0105 0.0310 0.0103 0.0099 0.0322 0.0150 0.0074 0.0080 0.0000 0.0096 0.0075 0.0000 0.0087
Average 0.0235 0.0082 0.0099 0.0166 0.0035 0.0090 0.0172 0.0053 0.0074 0.0162 0.0039 0.0079 0.0049 0.0000 0.0057 0.0027 0.0000 0.0042

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

12

Table 5
Comparative results of six algorithms for all the instances grouped by P, F and S.

Groups of instances P F S

10 15 20 25 30 2 4 2 4 6

SFLA aRPD 0.0121 0.0272 0.0294 0.0229 0.0257 0.0156 0.0313 0.0267 0.0229 0.0209
bRPD 0.0034 0.0097 0.0110 0.0074 0.0094 0.0062 0.0101 0.0098 0.0095 0.0052
sRPD 0.0070 0.0115 0.0114 0.0093 0.0104 0.0064 0.0134 0.0108 0.0089 0.0100

QSFLA aRPD 0.0093 0.0165 0.0202 0.0162 0.0210 0.0110 0.0223 0.0182 0.0161 0.0156
bRPD 0.0004 0.0015 0.0051 0.0018 0.0087 0.0016 0.0054 0.0033 0.0043 0.0029
sRPD 0.0059 0.0101 0.0118 0.0091 0.0083 0.0065 0.0115 0.0102 0.0087 0.0082

ABC aRPD 0.0070 0.0170 0.0234 0.0172 0.0215 0.0145 0.0199 0.0166 0.0190 0.0161
bRPD 0.0018 0.0053 0.0059 0.0058 0.0079 0.0038 0.0069 0.0051 0.0059 0.0050
sRPD 0.0037 0.0079 0.0100 0.0082 0.0074 0.0063 0.0086 0.0082 0.0077 0.0064

QABC aRPD 0.0068 0.0156 0.0214 0.0177 0.0194 0.0137 0.0186 0.0167 0.0167 0.0152
bRPD 0.0018 0.0020 0.0075 0.0025 0.0056 0.0025 0.0052 0.0054 0.0037 0.0025
sRPD 0.0039 0.0076 0.0099 0.0096 0.0083 0.0073 0.0084 0.0083 0.0082 0.0071

MPMA aRPD 0.0020 0.0049 0.0055 0.0061 0.0060 0.0042 0.0056 0.0050 0.0052 0.0045
bRPD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sRPD 0.0023 0.0064 0.0068 0.0066 0.0066 0.0049 0.0066 0.0060 0.0060 0.0053

MPMA-QL aRPD 0.0012 0.0035 0.0036 0.0024 0.0030 0.0024 0.0031 0.0029 0.0025 0.0029
bRPD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sRPD 0.0021 0.0047 0.0054 0.0045 0.0045 0.0037 0.0047 0.0048 0.0037 0.0041

Fig. 7. Mean plots of different groups on the test instances regarding aRPD, bRPD, sRPD.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

13

4.4. Algorithm comparison and analysis for DAHFSP-FPM

Four state-of-the-art optimization algorithms were selected as com-
petitors of MPMA and MPMA-QL, which are shuffled frog-leaping al-
gorithm (SFLA) and SFLA with Q-learning (QSFLA) (Cai et al., 2022), as
well as artificial bee colony algorithm (ABC) and ABC with Q-learning
(QABC) (Wang, Lei, et al., 2022). Due to the variability of the research

questions, some adjustments to comparison algorithms were required.
Besides, key parameters of algorithm rivals were re-analyzed to adapt
the proposed DAHFSP-FPM. It is worth noting that the problem
parameter T has been determined in Section 4.3 to have a significant
advantage at 100, and therefore T is fixed to 100 in the following
parametric analysis.

SFLA and QSFLA were proposed for solving a DAHFSP without
considering machine deterioration and maintenance activities. For
dealing with the proposed DAHFSP-FPM, actual processing time under
linear deterioration effects instead of normal processing time as well as
flexible PM activities were considered in the decoding process of SFLA
and QSFLA. There are six key parameters in QSFLA, which covers all the
parameters in SFLA. For convenience, the following analysis is per-
formed only for QSFLA parameters. Levels of each key parameter in
QSFLA were set as: the population size n in {30, 60, 90, 120, 150},
cluster number S in {2, 3, 5, 6, 10}, repeat times per search μ in {20, 30,
40, 50, 60}, learning rate α in {0.1, 0.2, 0.3, 0.4, 0.5}, discount factor γ
in {0.6, 0.7, 0.8, 0.9, 1}, greedy rate ε in {0.1, 0.2, 0.3, 0.4, 0.5}.
Orthogonal experiment settings under instance 20 × 2 × 6 and the
significant rank of parameter combinations are presented in Table A1
and Table A2 in the Appendix, and the factor level trend of parameters is
shown as Fig. A1. Hence, the parameter combination of QSFLA is sug-
gested as: n = 60, S = 10, μ = 60, α = 0.4, γ = 0.6, ε = 0.4.

ABC and QABC were used to tackle a three-stage distributed parallel
machine scheduling with PM. To solve DAHFSP-FPM by ABC, the
encoding representation and decoding procedure of MPMA and search
strategies of SFLA were employed. As for QABC, the maximum tardiness
metric in the state is replaced with the makespan, and the action set is
replaced using the one in QSFLA. Regarding the levels of each key
parameter in QABC, the population size n in {20, 40, 60, 80, 100}, local
search times R in {35, 45, 55, 65, 75}, Limit in {n, 2n, 3n, 4n, 5n},
learning rate α in {0.1, 0.2, 0.3, 0.4, 0.5}, discount factor γ in {0.6, 0.7,
0.8, 0.9, 1}, greedy rate ε in {0.1, 0.2, 0.3, 0.4, 0.5}. Orthogonal
experiment settings under instance 20 × 2 × 6 and the significant rank of
parameter combinations are given in Table A3 and Table A4, and the
factor level trend of parameters is shown as Fig. A2. Therefore, the
parameter combination of QABC is determined as: n = 100, R = 75,
Limit = n, α = 0.3, γ = 0.9, ε = 0.2.

To ensure fairness of algorithm competition, the same encoding and
decoding methods were used, and the maximum number of fitness
evaluations satisfying all algorithm convergence was selected as the

Fig. 8. Boxplot of six algorithms on makespan.

Fig. 9. Boxplot of six algorithms on CPU time.

Fig. 10. The optimal schedule found by MPMA-QL under the real-life case.

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

14

same termination condition. Comparative results of six algorithms
regarding aRPD, bRPD and sRPD are given in Table 4, in which optimal
values are marked in bold.

First, it is clear that MPMA-QL outperforms SFLA and QSFLA in terms
of aRPD and sRPD under all the instances. In terms of bRPD, SFLA finds
the same optimal value as MPMA-QL under three instances, while
QSFLA is comparable to MPMA-QL in strength under 13 instances.
Second, by comparing MPMA-QL with ABC and QABC in terms of aRPD
and bRPD, it can be seen that MPMA-QL obtained better optimization
results under all the instances. ABC showed equivalent performance on
only one instance in terms of aRPD and on 7 instances in terms of bRPD.
Besides, QABC exhibited equivalent results on only one instance in terms
of aRPD and on 12 instances in terms of bRPD. In terms of sRPD, MPMA-
QL revealed its superiority over ABC on 28 out of 30 instances and over
QABC on 26 out of 30 instances. The next is the comparison between
MPMA and MPMA-QL. In terms of aRPD, MPMA is better than MPMA-
QL under one instance and is comparable to MPMA-QL in strength
under 2 instances. In terms of bRPD, both of them achieved the optimum
under all the instances. In terms of sRPD, MPMA-QL revealed its supe-
riority over MPMA on 24 out of 30 instances, while MPMA achieved
better results on the remaining 6 instances as well as exhibited equiva-
lent results on two other instances.

In general, the average aRPD values of all the instances obtained by
SFLA, QSFLA, ABC, QABC, MPMA, and MPMA-QL are 0.0235, 0.0166,
0.0172, 0.0162, 0.0049, and 0.0027 respectively; the corresponding
average bRPD values are 0.0082, 0.0035, 0.0053, 0.0039, 0.0000 and
0.0000 respectively; the corresponding average sRPD values are 0.0099,
0.0090, 0.0074, 0.0079, 0.0057, and 0.0042 respectively. Besides, all
the instances were grouped by P, F and S to analyze the experimental
results in further, as shown in Table 5, in which optimal values are
marked in bold. For more intuitive comparison, Fig. 7 shows mean plots
of four groups of P = 10, P = 15, F = 2, S = 2 in terms of aRPD, bRPD
and sRPD. Obviously, it can be concluded that MPMA-QL has an excel-
lent performance over five other competing algorithms.

From the above statistics, some additional conclusions are given as
follows. On the one hand, Q-learning can assist the original meta-
heuristic algorithm to find better solutions and improve the stability of
the algorithm under most scenarios. On the other hand, the performance of the metaheuristic algorithm combined with Q-learning still depends

heavily on the performance of the metaheuristic algorithm. Therefore, it
is still crucial to design efficient metaheuristic algorithms in combina-
tion with problem features.

4.5. Real-life example without PM

A real-world scenario from a furniture company given by Cai et al.
(2022) was introduced to test the performance of six algorithms on
DAHFSP without PM. This real-life example is described in detail as
follows. There are two factories that collaborate to manufacture four
different types of cabinets. Each cabinet is constructed from the
respective 20 components when they are processed and transferred to
the assembly machine. During the component production phase, there
are five stages including punching, bending, welding, power pressing
and drilling, and each stage consists of 2 to 3 parallel machines. All
relevant data are fully referenced to Cai et al. (2022).

When the deterioration factors ε1, ε2 and ε3 are set to 0 and h‰‰‱崠告‰‰‱‱⸵〰㠠ⴷ㈮㐷㔷⁔洊嬨hom⥝⁔䨊ㄠ挵c

\〱㈀

Meo3䨊ㄠ〠〠ㄠ㐮ㄶㄱ‰⁔洊嬨7m⥝⁔䨊ㄠ〭⁔䨊〰अ‱㐮㜰㈸㔹⸳㔱㤠呭ਜ਼⠀᐀q〳䀰㘩ㄅ‱㐮㜰㈸㔹⸳《tcⴱ㐀㠉Ԡㄴ⸷〲㠠ⴵ㤮〰

47q㐅〰㘀

,�ⴳ䕍䌊䉔Ԡㄴ⸷〲㠠ⴵ㤮〠ㄠ㈰⸲ㄵ㔠ⴴ㔮㤳㘶⁔洊嬨l�ⴀ࠱Ԡㄴ⸷〲㠠ⴵ㤮〰〰〰〰〰〱㐲㠠ⴶ㠮㔴㈱⁔洊嬨Թㄵą‱㐮㜰㈸㔹⸰《⥝⁔䨊ㄠ〠〰Ѐ܀告‰‰‱′㜮㌲㌳㜱⸱㘶㤠呭ਜ਼⠀є䨊ੂ吊ㄅ‱㐮㜰㈸㔹⸰《⥝⁔䨊ㄠ〠〵㐠ⴷㄮㄶ㘹⁔洊嬨MfHą‱㐮㜰㈸㔱㘱ㄠ〠呭ਜ਼⠀㠀崠告‰㠩崠吵ą‱㐮㜰㈸㔹⸰〈efԠⴶ㔮㤱㜴⁔洊嬨47q⁔䨊〰km⥝⁔䨊ㄠ〠〠ㄠ㐮ㄸ㤶㘱⸹㜶㜠呭ਜ਼⠀ᤀĭㄴx〱㈀k�dMm⥝⁔䨊ㄠ〠〠ㄠ㠮〸〵㘱⸹㜶㜠呭ਜ਼⠀Ⰰⴀ㌭〲c�Ⰰᔠⴶㄮ㤷㘷⁔洊嬨K,q〴㤳ㄠ〠㈀k�‱‸⸹〵㘠ⴳ㤮㌷㠳⁔洊嬨acⴳc�Ⰰ�‱‵⸹ㄱ㜲⸴㜵㜠呭ਜ਼⠀Э7Ȁk� jC告‰‰〄�Э㔮㜹㈲Ȁk�MEfnm⥝⁔䨊ㄠ〠〠ㄠㄹ⸶⁔䨊ㄠ〠〠ㄠㄱ⸹〷㌠ⴷ㈮㐷㔷⁔洊〰〱〶㔸ㄠⴳ㔮㐳㜶⁔洊嬨Ȱk�Cㄠ㔮㤱ㄠⴷ㈮㐷㔷⁔洊嬨ioㄷ㠂�Ⰰ�܀ж㜹⁔洊嬰〰�܀‱′㤮㘠告‰ l 〱㈀k�͔䨊ㄠ〠〠ㄠ㈹⸶⁔䨊ㄠ〠〠ㄠ㘮ㄱ〰Ԁ༏eoȊ䉔ਲ�Ⰰf㘠ⴶ㤮㠵〹⁔洊嬨4m⤭⁔䨊〰ठ〰　⁔䨊ㄠ〠〠ㄠ㌮㠳㌷〰h告‰‰〉m⥝⁔䨊ㄠ〠〰〰⌀ጀⴰ̱‰‱‰〰C告‰‰m⥝⁔䨊ㄠ〠〠ㄠ㌮㤱㤰ऀ崰《⥝⁔䨊ㄠ〠〠ㄠㄱ⸹〷㌠ⴷ㈮㐷㔷⁔洊⁔䨊ㄠ〠〰〰⌀ጀⴰ㈠〠、‰〰C告‰‰Cㄠ㔮㘲㘴㘰⸶㘷㤠呭ਜ਼⠀ࠀq〴而‰〰C告‰‰Cㄠ㌮〵㠶‰⁔洊嬨Me�ⴠ吸ㄲ⥝†〰　⁔䨊ㄠ〠〉‰⁔洊嬨7m⥝⁔䨊ㄠ〭㜀⥝†〰　⁔䨊ㄠ〠〷〃F蠩崠告ਯ䘰‱⁔ⴵs‰〰C告‰′〃om⥝〰n‰〰C告‰‰‰‰ㄸ‱㔴⸰㌵洊〠朊䉔⁔䰊⽆〠ㄠ吳⸷《㌀㠰⁔洊嬨l om⥝⁔䨊ㄠ䬀㠀⸲㈵洊〠朊䉔⁔䰊⽆〠ㄠ吹⸴《㌀⁔洊嬨l om⥝⁔䨊ㄠ〠〰܀ሀЀ2,HC告‰‰m⥝〠ㄠ⸵㈷㐠ⴶ㤮㠵〹⁔洊嬨jh⸷〰Ĳ⥝⁔䨊⽆ㄠㄠ呦‰‰ༀጀഀ㌀

 o⠸

ⴱ㑥Ԡㄴ⸷〲㠠ⴵㄶㄱ‰⁔洊㤲㜲⸴㜵㜠呭ਜ਼⠀ༀȭą‱㐮㜰㈸㔱㘱焊㜮㤷〱‰‰‸⸵‱‸⸰㠰㔠ⴶㄮ㤱ㄠⴴ〮㘸㜱⁔洊嬨ecⴱㄷܹअ‱㐮㜰㈸㔹⸰㜶㘹⸸㔰㤠呭ਜ਼⠀㜀ⴱ㜵ą‱㐮㜰㈸㔹⸰〃oofMlhm⥝⁔䨊ㄠ〠〠ㄠ〮〰㠷ㄠ呭ਜ਼⠀ᄀȭ㐠〠あ吊ㄅ‱㐮㜰㈸㔹⸰〃m⥝〰̀Ѐ̀崱ㄠ〠呭ਹ㈠ⴷ㈮㐷㌳㜱⸱㘶㤠呭ਜ਼⠀qu㌁Ԡㄴ⸷〲㠠ⴵㄶ〰܀ሀЀ2,픁Ԡㄴ⸷〲㠠ⴵ㤮〰̀‱‱〮㔲㜴㘹⸸㔰㤠呭ਜ਼⠀ᔀ̮㔹㤰㘩ㄅ‱㐮㜰㈸㔹⸳〈M,ajm⥝⁔䨊ㄠ〠〠ㄠ㌰⸳㤴㐠ⴶ〮㘲㌠呭ਜ਼⠀Ԁᔯ䉔Ԡㄴ⸷〲㠠ⴵ㤮〠ㄠ㔮㤱ㄠⴷ㈮㐷㔷⁔洊嬨ioㄶAㄅ‱㐮㜰㈸㔹⸰〰〰〰〠告‰‰〄oT䨊ㄠ〠〠ㄠ㠮〸〰ㄠⴶ㤮㠵〹⁔洊嬨ee‰〰अ‱㐮㜰㈸㔹⸰㜶㘹⸸㔰㤠呭ਜ਼⠀㜀ⴱ㑥�Ⰰ�ᔀ⁔䨊ㄠ〠㘶㜹⁔洊嬨l�ⴱ7㜂�Ⰰ�ࠀༀጀഀᔀ崠告‰‰‱″〮㌹㐴㘰⸶㘷㤠呭ਜ਼⠀ᄀq㌹〸〠ਲ�Ⰰf㘠ⴶ㤮㜵㜠呭ਜ਼⠀ༀȭ㔨k�fo〒MEsԵ㐵⸹㌶㘠呭ਜ਼⠀Ԁq㌀Ȁk�Cㄠ㠮〷㌴㘹⸸㔰㤠呭ਜ਼⠀Ѐı尰ㄲ�ⰀCㄠㄸ㈵㙌㤠呭ਜ਼⠀Ѐ܆㤰ㄲ�Ⰰ�‱‵⸹々hm⥝⠀ظੂ吊㈀k�m⥝⁔䨊ㄠ〠〠ㄠ㠮㤷㘷㐸⸵㘱㌠呭ਜ਼⠀ഀጀȀk�Cㄠ㔮㤱ㄠⴷ㈮㐷‰‰‱′〮㔴㤸㠳〸㜲⸴㜵㜠呭ਜ਼㜮㜰㠠〠㈀k� Eem⥝⁔䨊ㄠ〠〠ㄠㄱ⸴㈳㘠ⴵ㤮㌵ㄹ⁔洊嬨B 㠰〰㈀k�Cㄠ㠮〷㌵‰⁔洊嬨joE㌵c�Ⰰf㘠ⴶ㤮㠶《⤮㈲吊ㄠ〠〠ㄠ㌱⸱㜹㔠ⴵ㈮㔰㈠呭ਜ਼⠀ȩ崠告ㄲ⥝⁔〰Ȁk�C呭ਜ਼⠀ༀࠀⴱ㑥mㄠ〠〠ㄠ㈳⸶㜹㘠ⴶ㌮〰ᔀ⁔䨊ㄠ〠〠ㄠ㈷⸳㈸㘠ⴶ㐮㘰ㄴ⁔洊㔰㤠呭ਜ਼⠀Ԁq㌱㠰‰‰‱′㌮㘶㐠ⴶ〮㘶㜹⁔洊嬨E�ⴰ〸〆mㄠ〠〠ㄠ㈳⸶〰崠告‰‰‱‱㌮〹㔲㌸⸰㘲㌠呭ਜ਼⠀ࠀq⁔㠰》mㄠ〠〠ㄠ㈳⸶㜰㈠ⴳ㠮〶㈳⁔洊嬨S⸱㘶㤠呭ਜ਼⠀牧⥝⁔䨊ㄠ〭㜦‰‰‱′㌮ㄠ〠〠ㄠ㈲⸹㘱ㄠⴳ㤮㌷㠳⁔洊嬨Hm⤭〰㘹㜆mㄠ〠〠ㄠ㈳䜲㌠呭ਜ਼⠀Ġ⠀㌀ⴴ‸㌰ᔀ‰‰‱′㌮㘶㐠ⴶ〮㘳㐠ⴶ㤮㠵〹⁔洊嬨S⸱㘶㤠呭ਜ਼⠀─ԭ㘸ੂ吊㘀‰‰‱′㌮ㄠ〠〠ㄠ㈲⸹㘱ㄠⴳ㤮㌷㠳⁔洊嬨Hm⤭《ㄠ〠ਸ਼mㄠ〠〠ㄠ㈳㼲㌠呭ਜ਼⠀Ġ⠀㌀ⴰ7〳〲㔀‰‰‱′㌮㘶〒MEsom⥝⁔䨊ㄠ〠〠ㄠ㐮㠱㔵㘵⸹ㄷ㐠呭ਜ਼′㘮㐸㤳㌵⸴㌷㘠呭ਜ਼⠀⸀Э〷 ⥝mㄠ〠〠ㄠ〮⼶㔹⸳㔱㤠呭ਜ਼〃m⥝⠀q〲″㠰͝mㄠ〠〠ㄠ〮jMjefjm⥝⁔䨊ㄠ〠〠ㄠ㈶⸱㌳㘠ⴴ㐮㘲㜸⁔洊嬨l�ⴷ㠵〵〳崀‰‰‱‰⸀ᔅ㔠ⴴ㔮㤳㘶⁔洊嬨l�ⴱ‰‱〳崀‰‰‱‰⸅‰⁔洊嬨jo�ⴵS崀‰‰‱‰⸀܀‱′㤮㘠告‰ 〇oCㄠㄱ⸴㈳㘠ⴵ㔠ⴶ㔮㤱㜴⁔洊嬨㔷⁔洊嬨2,턁崀‰‰‱‰⸄㤱㐲⸰〳⁔洊嬨lf7〱崀‰‰‱‰⸀ᤀᔀ㌀崠告‰‰‱″⸸㜶㘠ⴶ㌮㈹䔳⁔洊嬨loh崀‰‰‱‰⸳㘠ⴵ‰ 7m⥝⁔䨊ㄠ〸⤱㜲͝mㄠ〠〠ㄠ〮┶㔹⸳㔱㤠呭ਜ਼〃hohܴ⁔洊嬨㔷⁔洊嬨2,⁔䨊〱〳崀‰‰‱‰⸀⁔䨊ㄠ〠〠ㄠ㐮㌶〳㔳⸸㠠呭ਜ਼⠀ကqㄴ攱ѵ〱㈩崠告‰‰‱‰⸰〰〰〰〰〰〰ㄴ㈱〸㘵⸹ㄷ㐠呭ਜ਼⠭ㄿ〙田ㄲ⥝⁔䨊ㄠ〠〰崠告‰‰‱′ㄮ㔸㠳㐸⸵㘱㌠呭ਜ਼⠀ጀq〲‰㜰〱㈩崠告†ㄠ㌮㠳㌹㘸⸵㐲ㄠ呭ਜ਼⠀ᔀĭ〴⼙田ㄲ⥝⁔䨊ㄠ〠〰ࠀༀጀഀᔀ崠告‰‰‱″〮㌹㐴㘰⸶㘷㤠呭ਵ〹⁔洊嬨l�ⴲ⥝㠰൵〱㈩崠告…m⥝⁔䨊ㄠ〠〠ㄠ㈵⸷㘳㜠ⴴ㈮〰㌠呭ਜ਼⠀ጀO㈷㜍田ㄲ⥝⁔䨊ㄠyjm⥝⁔䨊ㄠ〠〠ㄠ㠮㤷嬨jh⸲〄田ㄲ⥝⁔䨊ㄠ〠〠ㄠ〮〰〰〰〰〰〰〱㐲㠠ⴶ㔮㤱㜴⁔洊嬨Aᅵ〱㈩崠告‰‰《⥝〰̀崠告‰‰‱′㘮㠸〵㌸⸰㘲㌠呭ਜ਼⠀ఀ7⸰〉田ㄲ⥝⁔䨊ㄠ〠〠ㄠ⸵㈷㐠ⴶ㤮㠵〹⁔洊〷㐠呭ਜ਼⠵㜠呭ਜ਼⡔䨊ㄠ〠〠ㄠ㠮㌴㌷㔳⸸ἀጠ告ਰ㌱田ㄲ⥝⁔䨊ㄠ〠⁔䨊ㄠ〠〠ㄠ㐮㌶〳㔳⸸㠠呭ਜ਼⠀ကA〆㸮㐱‰‴⸷〲㠠ⴵ㤮〠ㄠ㔮㤱ㄠⴷ㈮㐷㔷⁔洊嬨ioㄸu〷㘮㐱‰‴⸷〲㠠ⴵ㤮〰܀аሀༀࠀఅ㔠ⴴ㔮㤳㘶⁔洊嬨lfM㘮㐱‰‴⸷〲㠠ⴵ㤮㈳ㄠⴶ〮㘶㜹⁔洊嬨js告㔱㜶⸴ㄠ〠㐮㜰㈸㔊ㄠ〠〠ㄠㄿ㈳⁔㔰㤠呭ਜ਼⠀က㤹ㄷ㘮㐱‰‴⸷〲㠠ⴵ』Eⴠⴶ㔮㤱㜴⁔洊嬨S⸱㘶㤠呭ਜ਼⠀─ԑAㄷ㘮㐱‰‴⸷〲㠠ⴵ㤱‰‰‱′㈮㤶ㄱ㌹⸳㜸㌠呭ਜ਼⠀䠀ㄷ㤱㜶⸴ㄠ〠㐮㜰㈸㔊ㄠ〠　Ġ⠀㌀㌴ܱ㜶⸴ㄠ〠㐮㜰㈸㔨7m⥝⁔䨊ㄠ〳㈠呭㈳ㄷ㘮㐱‰‴⸷〲㠠ⴵ㤮⁔䨊ㄠ〠〠ㄠ㐮㌶〳㔳⸸㠠呭ਜ਼⠀က̰ㄲ⤱㸮㐱‰‴⸷〲㠠ⴵ㤮〰ࠀᔀᄀ܀ᴀༀ崰‱‸⸳㐳㜠ⴵ㌮㠱2Bお″ㄷ㘮㐱‰‴⸷〲㠠ⴵ‱‱㠲㔠ⴶ䰹⁔洊嬨oo㉔䨊ㄳㄷ㘮㐱‰‴⸷〲㠠ⴵ㤮〠ㄠ㔮㤱〰Ԁ̀崨io㐰〰ܶ⸴ㄠ〠㐮㜰㈸㔹⸰〈soC告‰‰‱‰⸰㠠呭ਜ਼⠀ကз7ㄷ㘮㐱‰‴⸷〲㠠ⴵ』㜸㔨7m⥝⁔䨊ㄠ〰〰ؽ⤱㜸㜱㈩崠告…m⥝⁔䨊ㄠ〠〠ㄠ㈵⸷㘳㜠ⴴ㈮〰㌠呭ਜ਼⠀ጀȶй〷㔩ㄷ㠷ㄲ⥝⁔䨊ㄠ⸸㠰㔠ⴳ㠮〶㈳⁔洊⁔䨊ㄠ〠〠ㄠㄵ⸸㘨js吰㜰㠰㜵⤱㜸㜱㈩崠告㐲⸰〳⁔洊嬨lf㕔㠰〵〷㔩ㄷ㠷ㄲ⥝⁔䨊ㄠ⸸㠰㔠ⴳ㠮⠀ԀܱԸㄷ〷㔩ㄷ㠷ㄲ⥝⁔䨊ㄠ⸸ご䨊ㄠ〠〠ㄠ⸷㠵㈠ⴳ㠮〶㈳⁔洊嬠ㄠ〆ECㄠ㌮㤱㤳㜱⸱㘶㤠呭ਜ਼⠀Ԁ㜱ㄷ㔩ㄷ㠷ㄲ⥝⁔䨊ㄠ⸸㠰㔠ⴳ㠮⠰܅㘵⸹ㄠㄠ㌮㤱㤳㜱⸱㘶㤠呭ਜ਼〠ㄠㄳ⸲〹㘹⸸㔰㤠呭ਜ਼⠀ሀጶ7㔰㜵⤱㜸㜱㈩崠告㘱⸹㜶㜠呭ਜ਼⠀ἀ㔰㜵⤱㜸㜱㈩崠告㘵⸹ㄷ㐠呭ਜ਼⠆㠊〽⤱㜸㜱㈩崠告㌸⸨〒oiCㄠㄳ⸲〹㘹⸸㔰㤠呭ਜ਼⠀ሀᐴԲ〷㔩ㄷ㠷ㄲ⥝⁔䨊ㄠ⸸㠰ༀ崠告‰‰㤶㘹⸸㔰㤠呭ਜ਼⠀ഀAغ⥝‹〱㈩崠告‰‰‱‸⸰㜳㐠ⴶ㤮㠵〹⁔洊嬨o�昊ㄠ〱㈰㜲⥝‹〱㈩崠告‰‰《⥝⁔䨊ㄠ〠〠ㄠㄳ⸲⁔䨊ㄠ〠〠ㄠ㠮㤷㘰Ѐ‱‱ㄮ㐲ㄷ㐠呭ਜ਼⠀Ԁܱ㌷〷㈩崠㤰ㄲ⥝⁔䨊ㄠ〠〰ࠀᄀᄀᄀ܀⁔䨊ㄠ〠〠ㄠ㈶⸰㘹㘠ⴶ㜮㈲㘲⁔洊嬨gIR⥝‹〱㈩崠告‰‰㌱㘰⸶㘷㤠呭ਜ਼⠀ᔀस㐰㜲⥝‹〱㈩崠告‰‰ㄠ〠呭ਹ㈠ⴷ㈮㐷㔷⁔洊嬨Me㜑㈰㜲⥝‹〱㈩崠告‰‰〃oofMlhm⥝⁔䨊ㄠ〠〠ㄠ〮〰㠷ㄠ呭〸⁔洊嬨gh㘮㠳ㄸ〷㈩崠㤰ㄲ⥝⁔䨊ㄠ々㔰㤠吨7m⥝⁔䨊ㄠ〳㠮㐸〺⥝‹〱㈀j�〆㩔䨊ㄲof㩔䨊ㄲ〵㠸〸㈱ㄴ〰〰〰〰〰〰⸰‰‱㠰告崠㈩㜱㜸⤱6Nj嬨洊⁔㜹㘶〮ⴶㄠ〳⸸ㄠ䨊⁔⥝ㄲ㠷ㄷ㴩〰䨊аԀ⠀ਜ਼呭㌠〰㈮ⴴㄠQMl〆㠵㔸㠵㤱㔴㜮′‱㠰

,l4ㄱ㜲告〱㈀

Expert Systems With Applications 232 (2023) 120837

15

Fig. A1. Factor level trend of QSFLA for each key parameter.

Fig. A2. Factor level trend of QABC for each key parameter.

Table A1
Orthogonal experiment settings of QSFLA.

Trial number Factor level RV

n S μ α γ ε

1 30 2 20 0.1 0.6 0.1 1209.58
2 30 3 40 0.4 1 0.2 1171.55
3 30 5 60 0.2 0.9 0.3 1166.56
4 30 6 30 0.5 0.8 0.4 1159.05
5 30 10 50 0.3 0.7 0.5 1151.13
6 60 2 60 0.4 0.8 0.5 1175.05
7 60 3 30 0.2 0.7 0.1 1189.46
8 60 5 50 0.5 0.6 0.2 1159.14
9 60 6 20 0.3 1 0.3 1180.94
10 60 10 40 0.1 0.9 0.4 1151.60
11 90 2 50 0.2 1 0.4 1198.43
12 90 3 20 0.5 0.9 0.5 1224.71
13 90 5 40 0.3 0.8 0.1 1165.09
14 90 6 60 0.1 0.7 0.2 1159.35
15 90 10 30 0.4 0.6 0.3 1155.59
16 120 2 40 0.5 0.7 0.3 1213.76
17 120 3 60 0.3 0.6 0.4 1170.05
18 120 5 30 0.1 1 0.5 1179.21
19 120 6 50 0.4 0.9 0.1 1162.87
20 120 10 20 0.2 0.8 0.2 1178.58
21 150 2 30 0.3 0.9 0.2 1222.79
22 150 3 50 0.1 0.8 0.3 1208.95
23 150 5 20 0.4 0.7 0.4 1203.40
24 150 6 40 0.2 0.6 0.5 1174.48
25 150 10 60 0.5 1 0.1 1160.58

Y. Jia et al.

Expert Systems With Applications 232 (2023) 120837

16

References

Cai, J., Lei, D., Wang, J., & Wang, L. (2022). A novel shuffled frog-leaping algorithm with
reinforcement learning for distributed assembly hybrid flow shop scheduling.
International Journal of Production Research, 61, 1233–1251.

Du, Y., Li, J., Li, C., & Duan, P. (2022). A reinforcement learning approach for flexible job
shop scheduling problem with crane transportation and setup times. IEEE
Transactions on Neural Networks and Learning Systems, 1–15.

Framinan, J. M., Perez-Gonzalez, P., & Fernandez-Viagas, V. (2019). Deterministic
assembly scheduling problems: A review and classification of concurrent-type
scheduling models and solution procedures. European Journal of Operational
Research, 273, 401–417.

Fu, Y., Hou, Y., Wang, Z., Wu, X., Gao, K., & Wang, L. (2021). Distributed scheduling
problems in intelligent manufacturing systems. Tsinghua Science and Technology, 26,
625–645.

Guo, L., Zhuang, Z., Huang, Z., & Qin, W. (2020). Optimization of dynamic multi-
objective non-identical parallel machine scheduling with multi-stage reinforcement
learning. IEEE International Conference on Automation Science and Engineering,
1215–1219.

Komaki, G., Sheikh, S., & Malakooti, B. (2019). Flow shop scheduling problems with
assembly operations: A review and new trends. International Journal of Production
Research, 57, 2926–2955.

Lee, J.-H., & Kim, H.-J. (2022). Reinforcement learning for robotic flow shop scheduling
with processing time variations. International Journal of Production Research, 60,
2346–2368.

Lei, D., Su, B., & Li, M. (2021). Cooperated teaching-learning-based optimisation for
distributed two-stage assembly flow shop scheduling. International Journal of
Production Research, 59, 7232–7245.

Li, H., Gao, K., Duan, P., Li, J., & Zhang, L. (2022). An improved artificial bee colony
algorithm With Q-Learning for solving permutation flow-shop scheduling problems.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–10.

Li, J.-Q., Song, M.-X., Wang, L., Duan, P.-Y., Han, Y.-Y., Sang, H.-Y., & Pan, Q.-K. (2019).
Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop
problem with deteriorating jobs. IEEE Transactions on Cybernetics, 50, 2425–2439.

Li, R., Gong, W., & Lu, C. (2022). A reinforcement learning based RMOEA/D for bi-
objective fuzzy flexible job shop scheduling. Expert Systems with Applications, 203,
Article 117380.

Li, Y.-Z., Pan, Q.-K., Ruiz, R., & Sang, H.-Y. (2022). A referenced iterated greedy
algorithm for the distributed assembly mixed no-idle permutation flowshop

Table A2
Response and rank of parameters for QSFLA.

Level n S μ α γ ε

1 1171.57 1203.92 1199.44 1181.74 1173.77 1177.52
2 1171.24 1192.94 1181.22 1181.50 1183.42 1178.28
3 1180.63 1174.68 1175.30 1178.00 1177.34 1185.16
4 1180.89 1167.34 1176.10 1173.69 1185.71 1176.50
5 1194.04 1159.49 1166.32 1183.45 1178.14 1180.92
Delta 22.80 44.43 33.12 9.76 11.94 8.65
Rank 3 1 2 5 4 6

Table A3
Orthogonal experiment settings of QABC.

Trial number Factor level RV

n R Limit α γ ε

1 20 35 n 0.1 0.6 0.1 1178.52

http://refhub.elsevier.com/S0957-4174(23)01339-8/h0005
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0005
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0005
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0010
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0010
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0010
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0015
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0015
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0015
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0015
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0020
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0020
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0020
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0025
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0025
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0025
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0025
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0030
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0030
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0030
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0035
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0035
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0035
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0040
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0040
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0040
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0045
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0045
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0045
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0050
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0050
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0050
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0055
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0055
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0055
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0060
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0060

Expert Systems With Applications 232 (2023) 120837

17

scheduling problem with the total tardiness criterion. Knowledge-Based Systems, 239,
Article 108036.

Lohmer, J., & Lasch, R. (2021). Production planning and scheduling in multi-factory
production networks: A systematic literature review. International Journal of
Production Research, 59, 2028–2054.

Mao, J.-Y., Pan, Q.-K., Miao, Z.-H., & Gao, L. (2021). An effective multi-start iterated
greedy algorithm to minimize makespan for the distributed permutation flowshop
scheduling problem with preventive maintenance. Expert Systems with Applications,
169, Article 114495.

Neufeld, J. S., Schulz, S., & Buscher, U. (2022). A systematic review of multi-objective
hybrid flow shop scheduling. European Journal of Operational Research, 309, 1–23.

Ruiz Rodríguez, M. L., Kubler, S., de Giorgio, A., Cordy, M., Robert, J., & Le Traon, Y.
(2022). Multi-agent deep reinforcement learning based Predictive Maintenance on
parallel machines. Robotics and Computer-Integrated Manufacturing, 78, Article
102406.

Shao, W., Shao, Z., & Pi, D. (2020). Modeling and multi-neighborhood iterated greedy
algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based
Systems, 194, Article 105527.

Song, H.-B., Yang, Y.-H., Lin, J., & Ye, J.-X. (2023). An effective hyper heuristic-based
memetic algorithm for the distributed assembly permutation flow-shop scheduling
problem. Applied Soft Computing, 135, Article 110022.

Srai, J. S., Kumar, M., Graham, G., Phillips, W., Tooze, J., , … Ford, S., et al. (2016).
Distributed manufacturing: Scope, challenges and opportunities. International
Journal of Production Research, 54, 6917–6935.

Wang, H., Sarker, B. R., Li, J., & Li, J. (2021). Adaptive scheduling for assembly job shop
with uncertain assembly times based on dual Q-learning. International Journal of
Production Research, 59, 5867–5883.

Wang, H., Yan, Q., & Zhang, S. (2021). Integrated scheduling and flexible maintenance in
deteriorating multi-state single machine system using a reinforcement learning
approach. Advanced Engineering Informatics, 49, Article 101339.

Wang, J., Lei, D., & Cai, J. (2022). An adaptive artificial bee colony with reinforcement
learning for distributed three-stage assembly scheduling with maintenance. Applied
Soft Computing, 117, Article 108371.

Wang, X., Ren, T., Bai, D., Ezeh, C., Zhang, H., & Dong, Z. (2022). Minimizing the sum of
makespan on multi-agent single-machine scheduling with release dates. Swarm and
Evolutionary Computation, 69, Article 100996.

Yang, S., Wang, J., & Xu, Z. (2022). Real-time scheduling for distributed permutation
flowshops with dynamic job arrivals using deep reinforcement learning. Advanced
Engineering Informatics, 54, Article 101776.

Zhang, Z., & Tang, Q. (2021). Integrating flexible preventive maintenance activities into
two-stage assembly flow shop scheduling with multiple assembly machines.
Computers and Industrial Engineering, 159, Article 107493.

Zhang, Z.-Q., Hu, R., Qian, B., Jin, H.-P., Wang, L., & Yang, J.-B. (2022). A matrix cube-
based estimation of distribution algorithm for the energy-efficient distributed
assembly permutation flow-shop scheduling problem. Expert Systems with
Applications, 194, Article 116484.

Zhao, F., Di, S., Wang, L., Xu, T., Zhu, N., et al. (2022). A self-learning hyper-heuristic for
the distributed assembly blocking flow shop scheduling problem with total flowtime
criterion. Engineering Applications of Artificial Intelligence, 116, Article 105418.

Zhao, F., Xu, Z., Wang, L., Zhu, N., Xu, T., & Jonrinaldi. (2022). A population-based
iterated greedy algorithm for distributed assembly no-wait flow-shop scheduling
problem. IEEE Transactions on Industrial Informatics, 1–12.

Zhao, Z., Zhou, M., & Liu, S. (2021). Iterated greedy algorithms for flow-shop scheduling
problems: A tutorial. IEEE Transactions on Automation Science and Engineering, 19,
1941–1959.

Y. Jia et al.

http://refhub.elsevier.com/S0957-4174(23)01339-8/h0060
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0060
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0065
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0065
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0065
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0070
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0070
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0070
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0070
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0075
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0075
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0080
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0080
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0080
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0080
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0085
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0085
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0085
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0090
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0090
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0090
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0095
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0095
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0095
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0100
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0100
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0100
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0105
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0105
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0105
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0110
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0110
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0110
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0115
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0115
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0115
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0120
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0120
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0120
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0125
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0125
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0125
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0130
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0130
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0130
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0130
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0135
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0135
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0135
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0140
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0140
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0140
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0145
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0145
http://refhub.elsevier.com/S0957-4174(23)01339-8/h0145

	Q-learning driven multi-population memetic algorithm for distributed three-stage assembly hybrid flow shop scheduling with ...
	1 Introduction
	2 Problem description and model formulation
	3 MPMA-QL for DAHFSP-FPM
	3.1 Encoding and decoding
	3.2 Population division and exploration search
	3.3 Knowledge-based exploitation search
	3.4 Q-learning process
	3.5 Overall description of MPMA-QL

	4 Computational experiments
	4.1 Test instance settings
	4.2 Performance metric
	4.3 Key parameter settings of MPMA-QL
	4.4 Algorithm comparison and analysis for DAHFSP-FPM
	4.5 Real-life example without PM

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix A Acknowledgement
	References

