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A B S T R A C T   

The distributed assembly flow shop scheduling (DAFS) problem has received much attention in the last decade, 
and a variety of metaheuristic algorithms have been developed to achieve the high-quality solution. However, 
there are still some limitations. On the one hand, these studies usually ignore the machine deterioration, 
maintenance, transportation as well as the flexibility of flow shops. On the other hand, metaheuristic algorithms 
are prone to fall into local optimality and are unstable in solving complex combinatorial optimization problems. 
Therefore, a multi-population memetic algorithm (MPMA) with Q-learning (MPMA-QL) is developed to address a 
distributed assembly hybrid flow shop scheduling problem with flexible preventive maintenance (DAHFSP-FPM). 
Specifically, a mixed integer linear programming (MILP) model targeted at the minimal makespan is first 
established, followed by an effective flexible maintenance strategy to simplify the model. To efficiently solve the 
model, MPMA is developed and Q-learning is used to achieve an adaptive individual assignment for each sub-
population to improve the performance of MPMA. Finally, two state-of-the-art metaheuristics and their Q- 
learning-based improvements are selected as rivals of the developed MPMA and MPMA-QL. A series of numerical 
studies are carried out along with a real-life case of a furniture manufacturing company, to demonstrate that 
MPMA-QL can provide better solutions on the studied DAHFSP-FPM..   

1. Introduction 

In today’s fast-changing market, distributed manufacturing (DM) is 
becoming increasingly popular as a new mode to increase production 
flexibility and tackle the challenges of mass customization (Fu et al., 
2021; Lohmer & Lasch, 2021; Srai et al., 2016). Distributed assembly 
flow-shop scheduling (DAFS) problem, as one of classical and chal-
lenging optimization problems under DM, is applicable in many prac-
tical manufacturing environments such as pharmaceutical production 
(Zhao, Xu, et al., 2022), furniture industry (Cai, Lei, Wang, & Wang, 
2022). DAFS has also attracted the attention of a wide range of scholars 
in terms of the review paper of Komaki, Sheikh, and Malakooti (2019) as 
well as related works of recent three years. 

A large portion of the research focused on the two-stage DAFS with 
distributed flow-shop fabrication and single-machine assembly and 
presented more and more efficient optimization algorithms. For 
instance, Zhao, Di, et al. (2022) and Zhao, Xu, et al. (2022) respectively 

designed a self-learning hyper-heuristic approach and a population- 
based iterated greedy algorithm to achieve the minimization of the 
total flow time. Zhang et al. (2022) presented a matrix cube-based 
estimation of distribution algorithm to tackle an energy-efficient DAFS 
with the objectives of minimizing the makespan and total carbon 
emission. Li, Pan, et al. (2022) developed a referenced iterated greedy 
algorithm to minimize the total tardiness. Song, Yang, Lin, and Ye 
(2023) proposed an effective hyper heuristic-based memetic algorithm 
to minimize the maximum completion time. 

Some studies have additionally considered assembly processes with 
multiple assembly machines (Framinan, Perez-Gonzalez, & Fernandez- 
Viagas, 2019). For instance, Li et al. (2019) investigated a two-stage 
DAFS with parallel batching and linear deteriorating and developed a 
knowledge-based hybrid artificial bee colony algorithm. Lei, Su, and Li 
(2021) proposed a cooperated teaching–learning-based optimization 
algorithm to deal with a two-stage DAFS targeted at the minimal 
makespan, where each factory is equipped with an assembly machine. 
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Cai et al. (2022) proposed a shuffled frog-leaping algorithm for a three- 
stage distributed assembly hybrid flow shop scheduling (DAHFS) prob-
lem, in which each factory has a hybrid flow shop for fabrication, a 
transportation machine for collecting and transferring, and an assembly 
machine for final assembly. 

Despite these DAFS-related initiatives, there is still more research 
that has to be refined. Various DAFS variations can be researched further 
in light of actual scenario demands and past research. On the one hand, 
DAHFS is rarely studied in existing studies. In reality, hybrid flow shop 
scheduling (HFS) and distributed hybrid flow shop scheduling (DHFS) 
problems are very common in real-world applications and have received 
a lot of attention in academia (Neufeld, Schulz, & Buscher, 2022; Shao, 
Shao, & Pi, 2020). Therefore, considering the flexibility of flow shops in 
DAFS is significant and realistic (Cai et al., 2022; Zhao, Zhou, & Liu, 
2021). On the other hand, previous research typically ignored the 
transportation stage that plays an important and essential role between 
the production and assembly stages; thus, there is a need for a more in- 
depth study of the three-stage DAFS. 

Moreover, machine deterioration and failures are inevitable in real- 
life assembly production, yet they are often neglected in DAFS-related 
research. There has been a succession of scholars to integrate appro-
priate maintenance activities into the assembly scheduling process in 
other manufacturing scenarios. For example, Zhang and Tang (2021) 
addressed a two-stage assembly flow shop scheduling problem with 
flexible preventive maintenance (PM) and parallel assembly machines, 
in which maintenance levels were defined to evaluate the states of each 
machine. Wang, Lei, et al. (2022) designed a 
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maintenance is an additional service provided by the supplier when the 
machine is sold. From the supplier’s perspective, the more maintenance 
is performed, the more additional revenue can be obtained. For this 
reason, it is assumed that the supplier will accept any maintenance plan 
presented by the manufacturer. In other words, the purpose of this study 
is to assist the manufacturer in determining the optimal production and 
maintenance plans of the DAHFSP-FPM targeted at the minimal make-
span. Notations throughout this study are defined in Table 1. 

To ensure the optimality of the proposed DAHFSP-FPM, a mixed 
integer linear programming (MILP) model with position-based mainte-
nance decisions (i.e., PM is possible after each operation) is presented 
below. 

min Cmax (1) 
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where the optimization objective is determined by (1) and (2), i.e., 
minimizing the makespan of the three-stage manufacturing process. 
Constraints (3) and (4) respectively represent the earliest starting time 
of each product at transportation and assembly stages. Constraint (5) 
shows that the earliest starting time of each component must be greater 
than or equal to the completion time of the previous operation of the 
component (if any). Constraints (6), (13) and (19) specify that the 
earliest starting time of each component (or product) must be more than 
or equal to the completion time of the previous component (or product) 
at the same machine (if any), in which if PM is performed immediately 
after the previous component (or product), the maintenance time is 
counted as part of the completion time of the previous component (or 
product). Constraint (7) initializes the earliest starting time at the pro-
duction stage. Constraints (8), (14) and (20) ensure the initial machine’s 
age as 0 at all the machines of the three-stage manufacturing process. 

Regarding machine deterioration and maintenance, constraints (9), 
(15) and (21) are used to calculate the actual processing time consid-
ering linear deterioration effects at the production, transportation, and 
assembly stages respectively. Constraints (10), (16) and (22) respec-
tively reflect the update of the machine’s age under cumulative deteri-
orating effects without PM at the production, transportation, and 
assembly stages. Constraints (11), (17) and (23) demonstrate the perfect 
effect of PM activities at the above three stages, i.e., the implementation 
of PM can restore the machine’s age to 0. 

As for the relationship between decision variables, constraints (12), 
(18) and (24) specify that the maintenance decision prior to the first 
operation of any machine must be 0. Constraints (25), (33) and (34) 
guarantee that all components of one product must be assigned to the 

same factory. Constraint (26) represents that each operation can only be 
processed on one machine of one factory. Constraints (27), (29) and (31) 
ensure that each machine at different stages can process at most one 
operation at any time. Constraints (28), (30) and (32) show that there is 
no vacant position before a filled position of the same machine at 
different stages. 

The MILP model has been validated by the CPLEX solver under small- 
scale cases. Due to the NP-hard nature of DAHFSP-FPM, a medium-scale 
case, e.g., six products, each of which consists of two to five components, 
and two factories, each of which has two stages and two to five machines 
per stage in the flow-shop production process, can hardly find an 
optimal solution in two hours. Although the production-maintenance 
joint scheduling plan derived in this way is theoretically optimal, 
finding the optimal solution in such a huge solution space is almost 
impossible using any optimization approach. As a result, we reduce the 
position-based maintenance decision to an efficient maintenance strat-
egy, that is, the cumulative running time of the machine cannot exceed a 
predetermined value T. In this way, maintenance activities can be 
determined given a production sequence, avoiding a large number of 
maintenance decisions while ensuring maintenance periodicity. Hence, 
constraints (12), (18) and (24) need to be adjusted to the following 
constraints respectively. Fig. 2 illustrates the sufficient condition for 
maintenance execution with constraint (35) as an example. 
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However, the simplified model considering the above constraints is 
still NP-hard, and the optimal solution can hardly be obtained in prac-
tice. To efficiently solve the simplified model, an MPMA and its Q- 
learning-based improvement are developed in the next section to find 
near-optimal solutions. 

Fig. 2. Illustration of the sufficient condition for PM.  

Y. Jia et al.                                                                                                                                                                                                                                       
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3. MPMA-QL for DAHFSP-FPM 

The basic idea behind memetic algorithms (MAs) is combining 
evolutionary operators such as crossover and mutation with local search 
to achieve better performance than either approach alone. Different 
designs of evolutionary search and local search strategies correspond to 
different MAs. To enhance the search capability during the solving 
process of DAHFSP-FPM, an improved MA called MPMA-QL is specially 
designed in this study, where the multi-population strategy is applied to 
MA and Q-learning is introduced to adaptively adjust the individual 
quantity among multiple subpopulations. In general, the first three 
subsections introduce the main components of MPMA, followed by the 
Q-learning process, and the overall framework of MPMA-QL is given in 
the last subsection. 

3.1. Encoding and decoding 

In this study, a three-string encoding strategy including factory string 
(FS), product string (PS), and component string (CS) is introduced to 
represent the solution. FS is used to specify the factory to which each 
product is assigned. PS indicates the processing sequence for all products 
during the three-stage manufacturing process. Moreover, CS is used to 
represent the processing sequence for all components of each product. 

Regarding the generation of the three-string encoding, PS and CS are 
completely randomly generated, while some FSs are generated using the 
following Heuristic to ensure the quality of the initial population and 
others are randomly generated to maintain population diversity. The 
pseudo code of the population initialization is given in Algorithm 1, 
where n denotes the population size. 

Heuristic: The total time for each product to be manufactured in three 
consecutive stages without considering deterioration is calculated and 
sorted by the longest processing time first (LPT) rule, and then the sorted 

products are distributed to each factory in turn based on the randomly 
generated factory order. 

An illustration of the three-string encoding with the DAHFSP-FPM in 
Fig. 1 as an example is presented in Fig. 3. It is clear that products 1, 4 
and 6 are assigned to factory 1 in the order of 6–1-4, and the permuta-
tion of corresponding components is 21-22-2-3-1-16-13-15-14, while the 
other three products are assigned to factory 2 in the order of 2-3-5, and 
the permutation of corresponding components is 4-6-5-7-9-8-10-12-11- 
17-19-18-20. The three-step decoding process is defined in detail as 
follows. 

Y. Jia et al.                                                                                                                                                                                                                                       
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The first step is the decoding of the production phase. The product 
manufacturing sequence and the factory assigned to each product are 
first determined based on PS and FS, and the machine with the earliest 
available time is assigned to each component of each product in turn 
according to the order of component codes of each product at each stage 
of hybrid flow-shop production under the corresponding factory. 
Moreover, the earliest start time of each component must satisfy con-
straints (5) and (6) in the MILP model. The second step is the decoding of 
the transportation phase. The earliest start time for each product is 
determined in order of the product code in turn. This depends on the 
maximum completion time for all components of that product, and the 
transportation completion time of the previous product, as shown in 
constraints (4) and (13). Similarly, constraints (3) and (19) are strictly 
satisfied in the decoding of the assembly phase. 

Unlike previous studies such as Cai et al. (2022), the decoding pro-
cess of components (or products) requires calculating the actual pro-
cessing time and updating the machine’s age based on the linear 
deterioration effect, as well as determining in real time whether the 
accumulated machine operation time exceeds a set threshold. If the 
threshold is exceeded (see Fig. 2), PM is performed to reset machine’s 
age to 0 and the component (or product) is processed immediately af-
terwards; otherwise, the component (or product) can be processed 
directly. 

3.2. Population division and exploration search 

The idea of multi-population collaborative optimization is intro-
duced to enhance the performance of exploration search in solving 
complex DAHFSP-FPM. The exploration search consists of crossover and 
mutation operations. Regarding crossover operations, we design seven 
crossover strategies based on the characteristics of three-level coding 
and these crossover strategies have their own advantages in different 
scenarios. Compared with a single crossover approach, the solutions 
generated by multiple crossover approaches correspond to different 
solution structures, which can avoid falling into the local optimum 
prematurely. As a consequence, the whole population with n individuals 
is divided into seven subpopulations with respective crossover strate-
gies, in which the number of individuals in each subpopulation is rela-

tively even and two crossover processes are performed using each 
crossover strategy. The details are presented as follows. 

The first crossover strategy C1 is dedicated to FS, as shown in Fig. 4. 
The first step is the crossover within a subpopulation, as shown in Al-
gorithm 2. The best and worst individuals in the current subpopulation s 
are first determined, and one individual Π from the rest of the subpop-
ulation is randomly selected as the optimized object. The codes with the 
same position as the worst individual are removed and the blanks are 
filled in order with reference to the coding order of the best individual, 
which is essentially a position-based crossover (PBX). Such an approach 
can guide individuals away from the poor solution and explore better 
neighborhood structures based on the current optimal individual. If the 
new solution after the above crossover is worse than Π, the PBX oper-
ation in Cai et al. (2022) is performed for Π and a random individual 
from the current subpopulation s. 

The second step is the crossover between subpopulations, as pre-
sented in Algorithm 3. The subpopulation s* with the global best so-
lution Πb* is first determined and the worst solution Πw* of 
subpopulation s* is also found. Then, Πb* and Πw* are used to guide the 
update of Π using the crossover strategy in subpopulation s*. If the new 
solution after the above crossover is worse than Π, the PBX operation is 
executed for Π and a random individual from a random subpopulation 
sΔ. Such an approach allows for interaction between subpopulations, 
which can effectively improve the structure of solutions.    

The other six crossover strategies are similar to C1 except that 
crossover operations are performed for different parts of the three-level 
code. C2 is specifically designed for PS. C3 is a separate operation for CS. 
C4-C7 perform multi-level crossover operations for the combinations of 
FS and PS, FS and CS, PS and CS, and FS and PS and CS, respectively. 

After two rounds of crossover processes, two mutation mechanisms 
including NS1 and NS2 proposed by Cai et al. (2022) are randomly 
assigned to each individual, as shown in the following Algorithm 4.  

Y. Jia et al.                                                                                                                                                                                                                                       
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3.3. Knowledge-based exploitation search 

Exploration search alone easily falls into local optima, so it is crucial 
to design knowledge-based exploitation search strategies to efficiently 
adjust the neighborhood structure of the solution. To improve the 

computational efficiency of MPMA, this study conducts three 
knowledge-based exploitation searches including LS1, LS2, LS3 for the 
best individual of each subpopulation, as shown in Algorithm 5. 

LS1: Select one product from the factory with longer completion time 
(which is treated as the critical factory) and exchange it with one 
product from other factories. The above procedure is repeated five 
times. If Cmax cannot be improved, the best individual from the five 
experiments is tried to replace the worst individual in the subpopulation. 

LS2: A product is randomly selected from PS and inserted sequen-
tially into all possible positions to evaluate fitness values. There are P 
possible neighborhood structures, and thus the fitness is evaluated P 
times. By comparing the fitness values, the optimal insertion position of 
the product is found to ensure a better neighborhood structure. 

LS3: The component codes of each product are adjusted in a similar 
way to LS2. Specifically, one component is selected randomly from each 
product in turn and is inserted into the optimal position of the corre-
sponding component code, and thus the total number of fitness assess-
ments depends on the total number of components. 

Fig. 3. Illustration of three-string representation.  

Fig. 4. Crossover illustration with FS as an example.  

Y. Jia et al.                                                                                                                                                                                                                                       
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3.4. Q-learning process 

In the developed MPMA, there is a lack of adaptive adjustment of the 
number of individuals of each subpopulation. To further achieve effec-
tive information exchange between subpopulations and enhance the 
solving performance of MPMA, Q-learning is employed to dynamically 

adjust individual numbers of seven subpopulations instead of random 
adjustment. The procedure of the Q-learning update is given in Algo-
rithm 6, in which ωmin, ωmax, C◦ , C*, σ, a, Q, σ′ and a′ are defined in 
Algorithm 7. In addition, the definitions of state, action and reward in 
the Q-learning process are presented below. 

State: System state is evaluated by the difference between the 
maximum value ωmax and minimum value ωmin of the number of in-
dividuals in each subpopulation. It can be found that the number of 
states is not fixed. If a new state σ′ is generated during the Q-learning 
process that did not appear before, the state is added to the Q-table Q. 

Action: Action set A is composed of three actions, i.e., increase the 
number of individuals of the subpopulation that generates more new 
solutions; decrease the number of individuals of the subpopulation that 
generates more new *、ㄶ㌶㠰㉔䨊ㄠ〠〠ㄠ㐱⸶㜵㠠㘷⸹㔸㠳〰〲㘶㠳⁔洊嬨*、ㄶ㘀ഀԀༀࠀᄀ܀崠告〰0㌠呭ਜ਼⠀ऀ〶 ⥝⁔䨊䰊⽆〠ㄠ呦‰‰‱༃⁔洊嬨g4‰‰‱‰⸷㌹㜠ⴱ⸳ㄵ㤠呭ਜ਼⠀ༀ㠷㠳⁔洊嬨*、ㄶ㌶㠰㉔䨊告‰‰‱′⸹㈳㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀ༀጀЄ㔹⁔浔洊嬨*、ㄶ㘰〈vid㤱‱㐰㠳⁔洊嬨g(㘀崠告‰‰‱″⸷㌴㌠ⴳ⸹㐰㘠呭ਜ਼⠀ᄀ᐀崠告‰‰‱‴⸹ㄵㄠⴳ⸹㐰㘠呭ਜ਼⠴㈠ⴲ〰〕 ⥝⁔䨊〈vid 㜍㈰̀ᔀ崠告‰‰‱ㄷ⸵㘹㐠ⴱ⸳ㄵ㤠呭ਜ਼⠀ืㄴ〰㜍㈰̀Ƞ〠〠ㄠⴱ㘮㈷㐸ㄮ㌱㔹⁔洊嬨each ⥝⁔䨊ㄠ〠〠ㄠⴱ㌮㠰㘵ㄮ㌱㔹⁔洊嬨sub(㜍㈰̀justm(〸㈰〰܍㈰̀ူ〆e ⥝⁔䨊ㄠ〠〱㈩崠告‰″㘸〲告‰‰‱″ㄵ㔮㈴㤴⁔洊嬨p〄w ⥝†㌷⸷‵㠴⸹〱㘴㜴㘠ⴲ⸸〹㘠呭ਜ਼⠀ᔀༀ(*ㄠ〠〠呭ਜ਼⠡⥝⁔䨊䕔ੑੱਵ⸵㜸㐲⸹㔲〵㠴⸹〱㘴㜴㘠ⴲ⸸〹㘠呭ਜ਼昊ㄠ〠〠ㄠ〠〠呭ਜ਼⠀㈮㘲㐷܀Ѐ〈s*ㄠ㈶⸰㠳㠠ⴶ⸵㘵㐠呭ਜ਼⠊⥝〰̀Ƞ〠〠ㄠⴱ⸴㜠〠呭ਜ਼⠀ㄠⴰ⸲㈰㔠ⴱ⸳〸㠠呭ਜ਼⠁ᔀ‱′㘮〸㌸㘮㔶㔴⁔洊嬱ㄸ㜰ㄠ㌸㜮㐳㤠㘷〮〰〰Ƞ〠〠ㄠⴱ〰ጀЄㄴ㠰ㄠ㌸㜮㐳㤠㘷〮a�〈s ⥝⁔䨊ㄠ〠㠠呭㌳‰‰‷⸹㜰ㄠ㐸㈮ㄷ㌠㘷〮告‰‰‱‱㐮ㄸ㌵㘮㔶ㄮ㤱㐴 ⥝⁔䨊ㄭ㈮㘲㐷⁔洊嬨(〃ut〰Ԁༀࠀ㜰ਾ㸊atevid}㜰㔀ᘀ́㈩崠告‰‰‱ㄱㄮ㌱㔹⁔洊嬨In ⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㘸㍱⸸㘀Ѐᴀns告‰‰‱ㄶ⸰〴㔠〳〰㐀崠告‰‰‰〰̀ษ崠告‰‰‱〇e)㈩崠告‰‰‱ 嬨suf㔱㘀Ѐᴀ〈vid-Ѐᴀurat ⥝⁔䨊ㄠ〠〠ㄠⴱ㘮〰洊嬨㈰‰‱㌮㔹㤲ㄮ㌰䜠告‰‴‱㜮㤳㠲㈮㙱㌹〠〠ㄠⴳ⸵㤹㈠ⴱ⸳〒�㌀崠吰*〠ㄠⴳ⸵㤹㈠ⴱ⸳〱″㜮ఀࠀ〮㈵㘀Ѐᴀ〈vi[⠀̳‸ㄶe,)㌀崠告‰‰‱‵⸴㜠〠呭ਜ਼⠀ࠀ܀崠告ਯ䘳‱⁔昊ㄠ〠〠ㄠⴲ㘠ㄾԀༀ‰‱″㌮㜵ㄸ‶㔮㌳㐱⁔洊〲㘵〴 ⥝⁔䨊ㄠ〠ⴱ⸳〸㠠呭ਜ਼⠀ࠃ㜀Ċ⥝⁔䨊ㄠ〹⁔洊嬨F⥝⁔䨊⽆〠ㄠ呦‰㠀㘀Ѐᴀ〰〳 ⥝⁔䨊ㄠ〠〠ㄠⴱ㠮㠷ㄱㄮ㌱㔹⁔洊嬨In ⥝⁔䨊ㄠ〠〠ㄠⴱ㜮㘏�Ѐ崠告‰‰‱‷⸸㔲㤠ⴱ⸳〸〰㜰ਾ㸊ss ⥝⁔䨴⁔洊嬨the ⥝⁔䨊ㄠ〠〠ㄠ㜮ㄴㄵ㔮㈴㤴⁔洊嬨sQ㠳焊〱⸸㈴㌠ⴲ⸶㈴㜠呭ਜ਼⠀崠吰‱‷ㄠ〮㔸㌲㈮㘲㐷⁔洊嬨oQû㌠ⴲ⸶㈴㜠呭ਜ਼⡁ 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Fig. 5. Flow chart of MPMA-QL.  
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The difference between MPMA and MPMA-QL is mainly the Q- 
learning process as presented in Algorithm 6. The complexity of the Q- 
learning process is O(3), since the only operation required is to obtain 
the maximum Q-value or a random one from A of size 3. As a result, the 
complexity overhead of MPMA-QL is only O(3) = O(1) extra computa-
tions per generation when compared to MPMA. In fact, MPMA-QL may 
even achieve better results with even less computation time than MPMA, 
as the Q-learning process can assist the meta-heuristic algorithm to 
converge quickly. Experimental evidence for this fact is provided in 
Section 4.5. 

4. Computational experiments 

In this section, a series of computational experiments were con-
ducted to evaluate the performance of the developed MPMA and MPMA- 
QL, in which two state-of-the-art meta-heuristics and their Q-learning- 
based improvements were selected as rivals. All algorithms were 
implemented in Python 3.8 and run on an Apple M1 CPU (3.20 GHz/ 
8.00 GB RAM). 

4.1. Test instance settings 

To examine the algorithm performance for solving the proposed 
DAHFSP-FPM, 30 instances (depicted as P× F× S) were randomly 

generated based on the combination of P ∈ {10,15,20,25,30}, F =

{2,4}, S ∈ {2,4,6}, in which P1
il, P

2
g and P3

g were randomly taken integer 
values from the interval [1,100], each product consists of 2 to 5 com-
ponents, and each stage of the hybrid flow shop consists of 2 to 5 parallel 
machines. Besides, it is assumed that deterioration rates and mainte-
nance durations were known in advance: ε1, ε2 and ε3 were set to 0.1, 
0.05 and 0.15 respectively, and t1PM, t2PM, t3PM were all 10. 

4.2. Performance metric 

The relative percentage deviation (RPD) metric (Mao, Pan, Miao, & 
Gao, 2021) was introduced to measure the performance of MPMA-QL 
and five other competitive algorithms, which is defined as follows: 

RPD =
Calg − Cbest

Cbest
(38)  

where Calg denotes the makespan obtained by a certain optimization 
algorithm on an instance, and Cbest represents the optimal makespan 
among the results obtained by all the competing algorithms on that 
instance. Each algorithm under each test instance was carried out 10 
times independently to achieve consistent and reliable results, reducing 
the variance caused by the randomness. Finally, the average RPD 
(aRPD), the best RPD (bRPD), and the standard deviation of RPD (sRPD) 
were calculated respectively to evaluate the solution quality of the al-
gorithm. 

4.3. Key parameter settings of MPMA-QL 

There are five key parameters of MPMA-QL, i.e., population size n, 
upper limit of cumulative running time T and Q-learning-related three 
parameters α, γ and ε. We selected four levels for each parameter to 
analyze the impact of different parameter configurations on the per-
formance of MPMA-QL, i.e., n = {40,60,80,100}, T =

{100,120,150,180}, α = {0.1,0.2,0.3, 0.4}, γ = {0.7,0.8,0.9, 1}, ε =

{0.1,0.2, 0.3, 0.4}. There are a total of 45 parameter combinations. We 
picked an orthogonal array with 16 parameter combinations based on 
Taguchi’s approach to lessen the complexity of the parameter analysis, 
where instance 20 × 2 × 6 was chosen as the test instance. To assess the 
sensitivity of the above key parameters, MPMA-QL with each parameter 
combination was run 10 times, and the mean value of the makespan over 
ten independent runs was determined as the response variable (RV), as 
shown in Table 2. Besides, Table 3 shows the significant rank of 
parameter combinations, and then Fig. 6 intuitively shows the factor 
level trend of parameters. 

From Table 3, it is obvious that T is the most significant parameter, 
which reflects that a proper maintenance cycle can greatly improve 
deteriorating effects. n plays the second most important role, which 
means that a proper population size can improve the solution perfor-
mance of metaheuristics. Regarding Q-learning-related parameters, ε, α 
and γ play the third, fourth and fifth roles respectively. Based on the RV 
results in Fig. 6, a promising parameter combination is suggested below: 
n = 100, T = 100, α = 0.3, γ = 0.8, ε = 0.2, which will be used in the 
subsequent experiments. 

Table 2 
Orthogonal experiment settings of MPMA-QL.  

Trial number Factor level RV 

n T α γ ε 

1 40 100  0.1 0.7  0.1  1156.55 
2 40 120  0.2 0.8  0.2  1159.45 
3 40 150  0.3 0.9  0.3  1165.75 
4 40 180  0.4 1  0.4  1170.46 
5 60 100  0.2 0.9  0.4  1155.32 
6 60 120  0.1 1  0.3  1160.09 
7 60 150  0.4 0.7  0.2  1159.29 
8 60 180  0.3 0.8  0.1  1170.84 
9 80 100  0.3 1  0.2  1151.59 
10 80 120  0.4 0.9  0.1  1159.04 
11 80 150  0.1 0.8  0.4  1159.28 
12 80 180  0.2 0.7  0.3  1175.28 
13 100 100  0.4 0.8  0.3  1149.14 
14 100 120  0.3 0.7  0.4  1149.37 
15 100 150  0.2 1  0.1  1157.40 
16 100 180  0.1 0.9  0.2  1163.39  

Table 3 
Response and rank of parameters for MPMA-QL.  

Level n T α γ ε 

1 1163.05 1153.15 1159.83 1160.12 1160.96 
2 1161.39 1156.99 1161.86 1159.68 1158.43 
3 1161.30 1160.43 1159.39 1160.88 1162.57 
4 1154.83 1169.99 1159.48 1159.88 1158.61 
Delta 8.22 16.84 2.47 1.20 4.14 
Rank 2 1 4 5 3  

Fig. 6. Factor level trend of MPMA-QL for each key parameter.  
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Table 4 
Comparative results of six algorithms on aRPD, bRPD,.sRPD  

Instance SFLA QSFLA ABC QABC MPMA MPMA-QL 

aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD 

10 × 2 × 2  0.0122  0.0021  0.0055  0.0112  0.0000  0.0058  0.0085  0.0000  0.0053  0.0099  0.0021  0.0048  0.0037  0.0000  0.0045  0.0019  0.0000  0.0037 
10 × 2 × 4  0.0254  0.0132  0.0066  0.0137  0.0026  0.0066  0.0218  0.0090  0.0070  0.0191  0.0086  0.0075  0.0035  0.0000  0.0038  0.0013  0.0000  0.0027 
10 × 2 × 6  0.0083  0.0000  0.0030  0.0052  0.0000  0.0031  0.0073  0.0016  0.0023  0.0054  0.0000  0.0034  0.0039  0.0000  0.0037  0.0026  0.0000  0.0036 
10 × 4 × 2  0.0156  0.0013  0.0140  0.0160  0.0000  0.0104  0.0020  0.0000  0.0045  0.0056  0.0000  0.0059  0.0009  0.0000  0.0017  0.0009  0.0000  0.0017 
10 × 4 × 4  0.0079  0.0036  0.0036  0.0077  0.0000  0.0058  0.0022  0.0000  0.0033  0.0007  0.0000  0.0015  0.0000  0.0000  0.0000  0.0004  0.0000  0.0011 
10 × 4 × 6  0.0031  0.0000  0.0093  0.0019  0.0000  0.0038  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
15 × 2 × 2  0.0217  0.0117  0.0078  0.0088  0.0000  0.0063  0.0153  0.0049  0.0096  0.0201  0.0033  0.0091  0.0045  0.0000  0.0070  0.0044  0.0000  0.0057 
15 × 2 × 4  0.0166  0.0054  0.0071  0.0083  0.0000  0.0076  0.0184  0.0097  0.0056  0.0140  0.0000  0.0096  0.0048  0.0000  0.0063  0.0034  0.0000  0.0039 
15 × 2 × 6  0.0195  0.0057  0.0103  0.0135  0.0054  0.0037  0.0132  0.0001  0.0079  0.0137  0.0029  0.0054  0.0026  0.0000  0.0039  0.0019  0.0000  0.0022 
15 × 4 × 2  0.0567  0.0196  0.0216  0.0332  0.0033  0.0177  0.0240  0.0063  0.0095  0.0183  0.0055  0.0072  0.0063  0.0000  0.0075  0.0054  0.0000  0.0092 
15 × 4 × 4  0.0243  0.0040  0.0144  0.0171  0.0000  0.0123  0.0136  0.0019  0.0079  0.0110  0.0000  0.0072  0.0050  0.0000  0.0065  0.0044  0.0000  0.0051 
15 × 4 × 6  0.0246  0.0117  0.0080  0.0181  0.0000  0.0127  0.0176  0.0089  0.0067  0.0164  0.0000  0.0073  0.0061  0.0000  0.0073  0.0013  0.0000  0.0021 
20 × 2 × 2  0.0186  0.0084  0.0066  0.0105  0.0000  0.0084  0.0157  0.0000  0.0070  0.0143  0.0000  0.0106  0.0051  0.0000  0.0058  0.0046  0.0000  0.0059 
20 × 2 × 4  0.0211  0.0084  0.0080  0.0153  0.0027  0.0109  0.0248  0.0079  0.0096  0.0179  0.0045  0.0101  0.0024  0.0000  0.0020  0.0012  0.0000  0.0026 
20 × 2 × 6  0.0192  0.0107  0.0083  0.0157  0.0000  0.0111  0.0180  0.0012  0.0087  0.0193  0.0041  0.0100  0.0050  0.0000  0.0055  0.0031  0.0000  0.0052 
20 × 4 × 2  0.0532  0.0228  0.0147  0.0298  0.0141  0.0164  0.0307  0.0090  0.0136  0.0316  0.0237  0.0101  0.0067  0.0000  0.0086  0.0026  0.0000  0.0044 
20 × 4 × 4  0.0374  0.0110  0.0159  0.0251  0.0115  0.0118  0.0291  0.0151  0.0113  0.0229  0.0107  0.0078  0.0088  0.0000  0.0121  0.0068  0.0000  0.0092 
20 × 4 × 6  0.0269  0.0046  0.0146  0.0249  0.0020  0.0119  0.0223  0.0022  0.0095  0.0226  0.0017  0.0107  0.0050  0.0000  0.0070  0.0035  0.0000  0.0048 
25 × 2 × 2  0.0067  0.0022  0.0035  0.0078  0.0004  0.0055  0.0088  0.0043  0.0044  0.0091  0.0006  0.0051  0.0028  0.0000  0.0036  0.0020  0.0000  0.0034 
25 × 2 × 4  0.0132  0.0047  0.0055  0.0089  0.0010  0.0066  0.0136  0.0040  0.0055  0.0153  0.0000  0.0093  0.0060  0.0000  0.0048  0.0017  0.0000  0.0033 
25 × 2 × 6  0.0165  0.0040  0.0076  0.0139  0.0021  0.0074  0.0166  0.0097  0.0053  0.0139  0.0000  0.0101  0.0057  0.0000  0.0053  0.0016  0.0000  0.0032 
25 × 4 × 2  0.0306  0.0107  0.0153  0.0219  0.0034  0.0144  0.0175  0.0043  0.0113  0.0216  0.0081  0.0102  0.0073  0.0000  0.0082  0.0021  0.0000  0.0055 
25 × 4 × 4  0.0356  0.0228  0.0092  0.0217  0.0000  0.0095  0.0206  0.0000  0.0117  0.0245  0.0064  0.0105  0.0087  0.0000  0.0099  0.0020  0.0000  0.0029 
25 × 4 × 6  0.0350  0.0000  0.0146  0.0231  0.0041  0.0113  0.0263  0.0127  0.0112  0.0217  0.0000  0.0124  0.0060  0.0000  0.0077  0.0051  0.0000  0.0085 
30 × 2 × 2  0.0078  0.0026  0.0035  0.0090  0.0032  0.0033  0.0084  0.0000  0.0052  0.0108  0.0038  0.0049  0.0040  0.0000  0.0044  0.0016  0.0000  0.0029 
30 × 2 × 4  0.0155  0.0076  0.0059  0.0155  0.0072  0.0050  0.0190  0.0010  0.0085  0.0164  0.0064  0.0056  0.0072  0.0000  0.0104  0.0026  0.0000  0.0043 
30 × 2 × 6  0.0119  0.0061  0.0071  0.0083  0.0000  0.0065  0.0086  0.0037  0.0027  0.0065  0.0017  0.0038  0.0023  0.0000  0.0025  0.0019  0.0000  0.0030 
30 × 4 × 2  0.0439  0.0163  0.0157  0.0340  0.0086  0.0137  0.0352  0.0226  0.0114  0.0255  0.0064  0.0152  0.0091  0.0000  0.0086  0.0031  0.0000  0.0058 
30 × 4 × 4  0.0316  0.0144  0.0131  0.0277  0.0176  0.0106  0.0266  0.0100  0.0068  0.0250  0.0000  0.0131  0.0054  0.0000  0.0041  0.0014  0.0000  0.0022 
30 × 4 × 6  0.0436  0.0094  0.0173  0.0316  0.0157  0.0105  0.0310  0.0103  0.0099  0.0322  0.0150  0.0074  0.0080  0.0000  0.0096  0.0075  0.0000  0.0087 
Average  0.0235  0.0082  0.0099  0.0166  0.0035  0.0090  0.0172  0.0053  0.0074  0.0162  0.0039  0.0079  0.0049  0.0000  0.0057  0.0027  0.0000  0.0042  
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Table 5 
Comparative results of six algorithms for all the instances grouped by P, F and S.  

Groups of instances P F S 

10 15 20 25 30 2 4 2 4 6 

SFLA aRPD 0.0121 0.0272 0.0294 0.0229 0.0257 0.0156 0.0313 0.0267 0.0229 0.0209 
bRPD 0.0034 0.0097 0.0110 0.0074 0.0094 0.0062 0.0101 0.0098 0.0095 0.0052 
sRPD 0.0070 0.0115 0.0114 0.0093 0.0104 0.0064 0.0134 0.0108 0.0089 0.0100 

QSFLA aRPD 0.0093 0.0165 0.0202 0.0162 0.0210 0.0110 0.0223 0.0182 0.0161 0.0156 
bRPD 0.0004 0.0015 0.0051 0.0018 0.0087 0.0016 0.0054 0.0033 0.0043 0.0029 
sRPD 0.0059 0.0101 0.0118 0.0091 0.0083 0.0065 0.0115 0.0102 0.0087 0.0082 

ABC aRPD 0.0070 0.0170 0.0234 0.0172 0.0215 0.0145 0.0199 0.0166 0.0190 0.0161 
bRPD 0.0018 0.0053 0.0059 0.0058 0.0079 0.0038 0.0069 0.0051 0.0059 0.0050 
sRPD 0.0037 0.0079 0.0100 0.0082 0.0074 0.0063 0.0086 0.0082 0.0077 0.0064 

QABC aRPD 0.0068 0.0156 0.0214 0.0177 0.0194 0.0137 0.0186 0.0167 0.0167 0.0152 
bRPD 0.0018 0.0020 0.0075 0.0025 0.0056 0.0025 0.0052 0.0054 0.0037 0.0025 
sRPD 0.0039 0.0076 0.0099 0.0096 0.0083 0.0073 0.0084 0.0083 0.0082 0.0071 

MPMA aRPD 0.0020 0.0049 0.0055 0.0061 0.0060 0.0042 0.0056 0.0050 0.0052 0.0045 
bRPD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
sRPD 0.0023 0.0064 0.0068 0.0066 0.0066 0.0049 0.0066 0.0060 0.0060 0.0053 

MPMA-QL aRPD 0.0012 0.0035 0.0036 0.0024 0.0030 0.0024 0.0031 0.0029 0.0025 0.0029 
bRPD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
sRPD 0.0021 0.0047 0.0054 0.0045 0.0045 0.0037 0.0047 0.0048 0.0037 0.0041  

Fig. 7. Mean plots of different groups on the test instances regarding aRPD, bRPD, sRPD.  
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4.4. Algorithm comparison and analysis for DAHFSP-FPM 

Four state-of-the-art optimization algorithms were selected as com-
petitors of MPMA and MPMA-QL, which are shuffled frog-leaping al-
gorithm (SFLA) and SFLA with Q-learning (QSFLA) (Cai et al., 2022), as 
well as artificial bee colony algorithm (ABC) and ABC with Q-learning 
(QABC) (Wang, Lei, et al., 2022). Due to the variability of the research 

questions, some adjustments to comparison algorithms were required. 
Besides, key parameters of algorithm rivals were re-analyzed to adapt 
the proposed DAHFSP-FPM. It is worth noting that the problem 
parameter T has been determined in Section 4.3 to have a significant 
advantage at 100, and therefore T is fixed to 100 in the following 
parametric analysis. 

SFLA and QSFLA were proposed for solving a DAHFSP without 
considering machine deterioration and maintenance activities. For 
dealing with the proposed DAHFSP-FPM, actual processing time under 
linear deterioration effects instead of normal processing time as well as 
flexible PM activities were considered in the decoding process of SFLA 
and QSFLA. There are six key parameters in QSFLA, which covers all the 
parameters in SFLA. For convenience, the following analysis is per-
formed only for QSFLA parameters. Levels of each key parameter in 
QSFLA were set as: the population size n in {30, 60, 90, 120, 150}, 
cluster number S in {2, 3, 5, 6, 10}, repeat times per search μ in {20, 30, 
40, 50, 60}, learning rate α in {0.1, 0.2, 0.3, 0.4, 0.5}, discount factor γ 
in {0.6, 0.7, 0.8, 0.9, 1}, greedy rate ε in {0.1, 0.2, 0.3, 0.4, 0.5}. 
Orthogonal experiment settings under instance 20 × 2 × 6 and the 
significant rank of parameter combinations are presented in Table A1 
and Table A2 in the Appendix, and the factor level trend of parameters is 
shown as Fig. A1. Hence, the parameter combination of QSFLA is sug-
gested as: n = 60, S = 10, μ = 60, α = 0.4, γ = 0.6, ε = 0.4. 

ABC and QABC were used to tackle a three-stage distributed parallel 
machine scheduling with PM. To solve DAHFSP-FPM by ABC, the 
encoding representation and decoding procedure of MPMA and search 
strategies of SFLA were employed. As for QABC, the maximum tardiness 
metric in the state is replaced with the makespan, and the action set is 
replaced using the one in QSFLA. Regarding the levels of each key 
parameter in QABC, the population size n in {20, 40, 60, 80, 100}, local 
search times R in {35, 45, 55, 65, 75}, Limit in {n, 2n, 3n, 4n, 5n}, 
learning rate α in {0.1, 0.2, 0.3, 0.4, 0.5}, discount factor γ in {0.6, 0.7, 
0.8, 0.9, 1}, greedy rate ε in {0.1, 0.2, 0.3, 0.4, 0.5}. Orthogonal 
experiment settings under instance 20 × 2 × 6 and the significant rank of 
parameter combinations are given in Table A3 and Table A4, and the 
factor level trend of parameters is shown as Fig. A2. Therefore, the 
parameter combination of QABC is determined as: n = 100, R = 75, 
Limit = n, α = 0.3, γ = 0.9, ε = 0.2. 

To ensure fairness of algorithm competition, the same encoding and 
decoding methods were used, and the maximum number of fitness 
evaluations satisfying all algorithm convergence was selected as the 

Fig. 8. Boxplot of six algorithms on makespan.  

Fig. 9. Boxplot of six algorithms on CPU time.  

Fig. 10. The optimal schedule found by MPMA-QL under the real-life case.  
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same termination condition. Comparative results of six algorithms 
regarding aRPD, bRPD and sRPD are given in Table 4, in which optimal 
values are marked in bold. 

First, it is clear that MPMA-QL outperforms SFLA and QSFLA in terms 
of aRPD and sRPD under all the instances. In terms of bRPD, SFLA finds 
the same optimal value as MPMA-QL under three instances, while 
QSFLA is comparable to MPMA-QL in strength under 13 instances. 
Second, by comparing MPMA-QL with ABC and QABC in terms of aRPD 
and bRPD, it can be seen that MPMA-QL obtained better optimization 
results under all the instances. ABC showed equivalent performance on 
only one instance in terms of aRPD and on 7 instances in terms of bRPD. 
Besides, QABC exhibited equivalent results on only one instance in terms 
of aRPD and on 12 instances in terms of bRPD. In terms of sRPD, MPMA- 
QL revealed its superiority over ABC on 28 out of 30 instances and over 
QABC on 26 out of 30 instances. The next is the comparison between 
MPMA and MPMA-QL. In terms of aRPD, MPMA is better than MPMA- 
QL under one instance and is comparable to MPMA-QL in strength 
under 2 instances. In terms of bRPD, both of them achieved the optimum 
under all the instances. In terms of sRPD, MPMA-QL revealed its supe-
riority over MPMA on 24 out of 30 instances, while MPMA achieved 
better results on the remaining 6 instances as well as exhibited equiva-
lent results on two other instances. 

In general, the average aRPD values of all the instances obtained by 
SFLA, QSFLA, ABC, QABC, MPMA, and MPMA-QL are 0.0235, 0.0166, 
0.0172, 0.0162, 0.0049, and 0.0027 respectively; the corresponding 
average bRPD values are 0.0082, 0.0035, 0.0053, 0.0039, 0.0000 and 
0.0000 respectively; the corresponding average sRPD values are 0.0099, 
0.0090, 0.0074, 0.0079, 0.0057, and 0.0042 respectively. Besides, all 
the instances were grouped by P, F and S to analyze the experimental 
results in further, as shown in Table 5, in which optimal values are 
marked in bold. For more intuitive comparison, Fig. 7 shows mean plots 
of four groups of P = 10, P = 15, F = 2, S = 2 in terms of aRPD, bRPD 
and sRPD. Obviously, it can be concluded that MPMA-QL has an excel-
lent performance over five other competing algorithms. 

From the above statistics, some additional conclusions are given as 
follows. On the one hand, Q-learning can assist the original meta-
heuristic algorithm to find better solutions and improve the stability of 
the algorithm under most scenarios. On the other hand, the performance of the metaheuristic algorithm combined with Q-learning still depends 

heavily on the performance of the metaheuristic algorithm. Therefore, it 
is still crucial to design efficient metaheuristic algorithms in combina-
tion with problem features. 

4.5. Real-life example without PM 

A real-world scenario from a furniture company given by Cai et al. 
(2022) was introduced to test the performance of six algorithms on 
DAHFSP without PM. This real-life example is described in detail as 
follows. There are two factories that collaborate to manufacture four 
different types of cabinets. Each cabinet is constructed from the 
respective 20 components when they are processed and transferred to 
the assembly machine. During the component production phase, there 
are five stages including punching, bending, welding, power pressing 
and drilling, and each stage consists of 2 to 3 parallel machines. All 
relevant data are fully referenced to Cai et al. (2022). 
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Fig. A1. Factor level trend of QSFLA for each key parameter.  

Fig. A2. Factor level trend of QABC for each key parameter.  

Table A1 
Orthogonal experiment settings of QSFLA.  

Trial number  Factor level RV 

n S μ α γ ε 

1 30 2 20  0.1 0.6  0.1  1209.58 
2 30 3 40  0.4 1  0.2  1171.55 
3 30 5 60  0.2 0.9  0.3  1166.56 
4 30 6 30  0.5 0.8  0.4  1159.05 
5 30 10 50  0.3 0.7  0.5  1151.13 
6 60 2 60  0.4 0.8  0.5  1175.05 
7 60 3 30  0.2 0.7  0.1  1189.46 
8 60 5 50  0.5 0.6  0.2  1159.14 
9 60 6 20  0.3 1  0.3  1180.94 
10 60 10 40  0.1 0.9  0.4  1151.60 
11 90 2 50  0.2 1  0.4  1198.43 
12 90 3 20  0.5 0.9  0.5  1224.71 
13 90 5 40  0.3 0.8  0.1  1165.09 
14 90 6 60  0.1 0.7  0.2  1159.35 
15 90 10 30  0.4 0.6  0.3  1155.59 
16 120 2 40  0.5 0.7  0.3  1213.76 
17 120 3 60  0.3 0.6  0.4  1170.05 
18 120 5 30  0.1 1  0.5  1179.21 
19 120 6 50  0.4 0.9  0.1  1162.87 
20 120 10 20  0.2 0.8  0.2  1178.58 
21 150 2 30  0.3 0.9  0.2  1222.79 
22 150 3 50  0.1 0.8  0.3  1208.95 
23 150 5 20  0.4 0.7  0.4  1203.40 
24 150 6 40  0.2 0.6  0.5  1174.48 
25 150 10 60  0.5 1  0.1  1160.58  
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